Delay considerttion has been a major issue in design and test of high performance digital circuits . The assumption of input signal change occurring only when all internal nodes are stable restricts the increase of cl...Delay considerttion has been a major issue in design and test of high performance digital circuits . The assumption of input signal change occurring only when all internal nodes are stable restricts the increase of clock frequency. It is no longer true for wave pipelining circuits. However, previous logical delay models are based on the assumption. In addition, the stable time of a robust delay test generally depends on the longest sensitizable path delay. Thus , a new delay model is desirable. This paper explores the necessity first. Then, Boolean process to analytically describe the logical and timing behavior of a digital circuit is reviewed . The concept of sensitization is redefined precisely in this paper. Based on the new concept of sensitization, an analytical delay model is introduced . As a result , many untestable delay faults under the logical delay model can be tested if the output waveforms can be sampled at more time points. The longest sensitiaable path length is computed for circuit design and delay test .展开更多
Detection of path delay faults requires two-pattern tests. BIST technique provides a low-cost test solution. This paper proposes an approach to designing a cost-effective deterministic test pattern generator (TPG) for...Detection of path delay faults requires two-pattern tests. BIST technique provides a low-cost test solution. This paper proposes an approach to designing a cost-effective deterministic test pattern generator (TPG) for path delay testing. Given a set of pre-generated test-pairs with pre-determined fault coverage, a deterministic TPG is synthesized to apply the given test-pair set in a limited test time. To achieve this objective, configurable linear feedback shift register (LFSR) structures are used. Techniques are developed to synthesize such a TPG, which is used to generate an unordered deterministic test-pair set. The resulting TPG is very efficient in terms of hardware size and speed performance. Simulation of academic benchmark circuits has given good results when compared to alternative solutions.展开更多
文摘Delay considerttion has been a major issue in design and test of high performance digital circuits . The assumption of input signal change occurring only when all internal nodes are stable restricts the increase of clock frequency. It is no longer true for wave pipelining circuits. However, previous logical delay models are based on the assumption. In addition, the stable time of a robust delay test generally depends on the longest sensitizable path delay. Thus , a new delay model is desirable. This paper explores the necessity first. Then, Boolean process to analytically describe the logical and timing behavior of a digital circuit is reviewed . The concept of sensitization is redefined precisely in this paper. Based on the new concept of sensitization, an analytical delay model is introduced . As a result , many untestable delay faults under the logical delay model can be tested if the output waveforms can be sampled at more time points. The longest sensitiaable path length is computed for circuit design and delay test .
基金This work was supported in part by the National Natural Science FOundation of China under grant No.69976002 and in part by the
文摘Detection of path delay faults requires two-pattern tests. BIST technique provides a low-cost test solution. This paper proposes an approach to designing a cost-effective deterministic test pattern generator (TPG) for path delay testing. Given a set of pre-generated test-pairs with pre-determined fault coverage, a deterministic TPG is synthesized to apply the given test-pair set in a limited test time. To achieve this objective, configurable linear feedback shift register (LFSR) structures are used. Techniques are developed to synthesize such a TPG, which is used to generate an unordered deterministic test-pair set. The resulting TPG is very efficient in terms of hardware size and speed performance. Simulation of academic benchmark circuits has given good results when compared to alternative solutions.