A backstepping method based adaptive robust dead-zone compensation controller is pro- posed for the electro-hydraulic servo systems (EHSSs) with unknown dead-zone and uncertain system parameters. Variable load is se...A backstepping method based adaptive robust dead-zone compensation controller is pro- posed for the electro-hydraulic servo systems (EHSSs) with unknown dead-zone and uncertain system parameters. Variable load is seen as a sum of a constant and a variable part. The constant part is regarded as a parameter of the system to be estimated real time. The variable part together with the friction are seen as disturbance so that a robust term in the controller can be adopted to reject them. Compared with the traditional dead-zone compensation method, a dead-zone compensator is incor- porated in the EH$S without constructing a dead-zone inverse. Combining backstepping method, an adaptive robust controller (ARC) with dead-zone compensation is formed. An easy-to-use ARC tuning method is also proposed after a further analysis of the ARC structure. Simulations show that the proposed method has a splendid tracking performance, all the uncertain parameters can be estimated, and the disturbance has been rejected while the dead-zone term is well estimated and compensated.展开更多
To solve the dead⁃zone in the output flow curve of the proportional flow valve without displacement sensor,a dead⁃zone compensation approach is proposed in this paper.Instead of detection and feedback of the valve spo...To solve the dead⁃zone in the output flow curve of the proportional flow valve without displacement sensor,a dead⁃zone compensation approach is proposed in this paper.Instead of detection and feedback of the valve spool position,the proposed approach adopted the pressure drop across the valve metering orifice to accomplish the dead⁃zone compensation.The first step was to test and get the_(max)imum output flow,Q_(max),at a preset reference pressure drop,such asΔP_(0).The next step was to construct the target compensation flow curve,which is a line through(0,0)and(ΔP_(0),Q_(max)).Then a compensation law was designed to approach the target curve.However,the research results show that the above strategy caused over⁃compensation once the actual pressure drop deviated fromΔP_(0).Thus a correction coefficient,β,was presented to correct the initial compensation law as the pressure drop deviated fromΔP_(0).For example,the test results indicate that the corrected compensation approach could reduce the dead⁃zone from 53.9%to 3.5%at a pressure drop of 1 MPa;as the pressure drop was increased to 5 MPa,the dead⁃zone was reduced from 51.7%to 3.5%.Therefore,the following conclusions can be drawn:the proposed compensation approach is feasible,which can effectively reduce the dead⁃zone and improve the output flow static performance of the proportional flow valve without spool displacement feedback.展开更多
基金supported by Program for New Century Excellent Talents in University(NCET-12-0049)Beijing Natural Science Foundation(4132034)
文摘A backstepping method based adaptive robust dead-zone compensation controller is pro- posed for the electro-hydraulic servo systems (EHSSs) with unknown dead-zone and uncertain system parameters. Variable load is seen as a sum of a constant and a variable part. The constant part is regarded as a parameter of the system to be estimated real time. The variable part together with the friction are seen as disturbance so that a robust term in the controller can be adopted to reject them. Compared with the traditional dead-zone compensation method, a dead-zone compensator is incor- porated in the EH$S without constructing a dead-zone inverse. Combining backstepping method, an adaptive robust controller (ARC) with dead-zone compensation is formed. An easy-to-use ARC tuning method is also proposed after a further analysis of the ARC structure. Simulations show that the proposed method has a splendid tracking performance, all the uncertain parameters can be estimated, and the disturbance has been rejected while the dead-zone term is well estimated and compensated.
基金Sponsored by the National Natural Science Foundation of China(Grant Nos.51775362 and 51805350)the Natural Science Foundation of Shanxi Province(Grant No.201801D221226).
文摘To solve the dead⁃zone in the output flow curve of the proportional flow valve without displacement sensor,a dead⁃zone compensation approach is proposed in this paper.Instead of detection and feedback of the valve spool position,the proposed approach adopted the pressure drop across the valve metering orifice to accomplish the dead⁃zone compensation.The first step was to test and get the_(max)imum output flow,Q_(max),at a preset reference pressure drop,such asΔP_(0).The next step was to construct the target compensation flow curve,which is a line through(0,0)and(ΔP_(0),Q_(max)).Then a compensation law was designed to approach the target curve.However,the research results show that the above strategy caused over⁃compensation once the actual pressure drop deviated fromΔP_(0).Thus a correction coefficient,β,was presented to correct the initial compensation law as the pressure drop deviated fromΔP_(0).For example,the test results indicate that the corrected compensation approach could reduce the dead⁃zone from 53.9%to 3.5%at a pressure drop of 1 MPa;as the pressure drop was increased to 5 MPa,the dead⁃zone was reduced from 51.7%to 3.5%.Therefore,the following conclusions can be drawn:the proposed compensation approach is feasible,which can effectively reduce the dead⁃zone and improve the output flow static performance of the proportional flow valve without spool displacement feedback.