期刊文献+
共找到23篇文章
< 1 2 >
每页显示 20 50 100
基于遥感数据与作物生长模型同化的冬小麦长势监测与估产方法研究 被引量:63
1
作者 闫岩 柳钦火 +2 位作者 刘强 李静 陈良富 《遥感学报》 EI CSCD 北大核心 2006年第5期804-811,共8页
本文以LAI作为结合点,讨论了利用复合型混合演化(SCE_UA)算法实现CERES_W heat模型与遥感数据同化的可行性。CERES_W heat模型同化后主要生育期和产量的模拟值分别与真实条件下模型相应模拟值以及实测值进行比较。结果表明,同化后CERES_... 本文以LAI作为结合点,讨论了利用复合型混合演化(SCE_UA)算法实现CERES_W heat模型与遥感数据同化的可行性。CERES_W heat模型同化后主要生育期和产量的模拟值分别与真实条件下模型相应模拟值以及实测值进行比较。结果表明,同化后CERES_W heat模型的模拟精度对LAI外部同化数据的误差并不十分敏感。并且在LAI同化数据较少时,也可获得较好的同化结果。这一特点体现了SCE_UA算法应用于同化过程的优越性,为同化策略在区域冬小麦长势监测及估产中的应用提供了基础。 展开更多
关键词 遥感 作物生长模型 同化 冬小麦 长势监测 估产
下载PDF
基于遥感的国外作物长势监测与产量趋势估计 被引量:37
2
作者 钱永兰 侯英雨 +3 位作者 延昊 毛留喜 吴门新 何延波 《农业工程学报》 EI CAS CSCD 北大核心 2012年第13期166-171,I0006,I0007,共8页
国外重点产粮区的作物长势和产量增长趋势信息对于中国政府决策和制订合理的粮食政策具有重要意义,但由于地域的限制、生产方式的差异以及国外可获取的气象资料有限,气象模型和农学模型在国外估产方面尚存在不足,遥感以其便捷、快速、... 国外重点产粮区的作物长势和产量增长趋势信息对于中国政府决策和制订合理的粮食政策具有重要意义,但由于地域的限制、生产方式的差异以及国外可获取的气象资料有限,气象模型和农学模型在国外估产方面尚存在不足,遥感以其便捷、快速、客观的优势已被越来越多地采用进行国外作物长势监测和产量估计。该文以美国玉米和印度水稻为例,探讨了基于1kmSPOT-VGT遥感资料进行作物长势监测和产量趋势估计的方法,并结合当地气象条件对其结果进行了分析。经检验,利用该方法得到的长势状况及空间分布与实际基本一致,产量增长趋势预测准确率为100%;在作物生长旺盛季节,植株覆盖密度较大时,EVI比NDVI能更真实地反映作物的长势状况。该研究可为国外作物长势遥感监测与产量估算业务应用提供参考。 展开更多
关键词 遥感 作物 监测 NDVI EVI 长势 估产
下载PDF
农作物单产预测的运行化方法 被引量:16
3
作者 孟庆岩 李强子 吴炳方 《遥感学报》 EI CSCD 北大核心 2004年第6期602-610,共9页
提出了适于运行化农作物单产预测的方法。即以农作物单产区划为基础 ,通过搜集不同地区不同作物的单产预测模型 ,分析每个模型的空间适用范围 ,并从模型参数等角度筛选模型 ,然后利用这些模型进行气象站点的作物单产预测 ,并以NDVI分布... 提出了适于运行化农作物单产预测的方法。即以农作物单产区划为基础 ,通过搜集不同地区不同作物的单产预测模型 ,分析每个模型的空间适用范围 ,并从模型参数等角度筛选模型 ,然后利用这些模型进行气象站点的作物单产预测 ,并以NDVI分布图为参考数据将点上的单产数据空间外推到区域尺度。借助耕地分布估计区域水平的农作物单产。最后以 2 0 0 3年冬小麦为例 ,进行了全国 10个省的冬小麦平均单产估算 ,花费了较少的人力和时间 。 展开更多
关键词 农作物单产 运行化 农业气象模型
下载PDF
遥感信息与作物生长模式的结合方法和应用——研究进展 被引量:17
4
作者 赵艳霞 周秀骥 梁顺林 《自然灾害学报》 CSCD 北大核心 2005年第1期103-109,共7页
将遥感信息与作物生长模式结合来预测作物产量,是目前的一个热点研究课题。概述了遥感信息与作物生长模式结合的主要方法,包括驱动法和初始化 /参数化法,以及最新的一些研究个例。同时还分析了将遥感信息应用到作物生长模式过程中存在... 将遥感信息与作物生长模式结合来预测作物产量,是目前的一个热点研究课题。概述了遥感信息与作物生长模式结合的主要方法,包括驱动法和初始化 /参数化法,以及最新的一些研究个例。同时还分析了将遥感信息应用到作物生长模式过程中存在和有待改进的问题。 展开更多
关键词 遥感 作物生长模式 估产
下载PDF
中国作物生长模拟监测系统构建及应用 被引量:17
5
作者 侯英雨 何亮 +3 位作者 靳宁 郑昌玲 刘维 张蕾 《农业工程学报》 EI CAS CSCD 北大核心 2018年第21期165-175,312,共12页
该文系统阐述了中国作物生长模拟监测系统(CropGrowthSimulatingandMonitoringSysteminChina,CGMS-China)的构建方法及其在国家级农业气象业务中的应用。CGMS-China是基于WOFOST、Oryza2000、WheatSM、ChinaAgroys 4个作物模型构建的系... 该文系统阐述了中国作物生长模拟监测系统(CropGrowthSimulatingandMonitoringSysteminChina,CGMS-China)的构建方法及其在国家级农业气象业务中的应用。CGMS-China是基于WOFOST、Oryza2000、WheatSM、ChinaAgroys 4个作物模型构建的系统,在作物长势监测评估、农业气象灾害影响评估、作物产量预报等农业气象业务中均有应用。该系统可进行作物长势监测、产量预报、农业气象灾害影响评估。利用CGMS-China模拟输出的地上生物量、叶面积指数、穗质量,建立作物长势评估指标,可对小麦、玉米、水稻进行实时长势监测与评估。通过CGMS-China对2014年8月中旬华北黄淮夏玉米的干旱产量损失评估和2016年6月22日早稻高温热害的产量损失预估表明,CGMS-China对农业气象灾害影响评估的效果较好。利用CGMS-China对2014年冬小麦主产省进行产量预报,各省的平均预报相对误差为7%。与此同时,在CGMS-China中利用遥感数据同化方法,对山西洪洞县进行产量预报,预报相对误差小于11%。该系统在国家级农业气象业务中具有良好的应用前景。 展开更多
关键词 模型 气象 遥感 作物长势监测 农业气象灾害 产量预报 同化
下载PDF
基于改进神经网络的农作物产量预测方法 被引量:10
6
作者 刘鹏 郑勇 杨红军 《电子技术应用》 2019年第10期88-91,99,共5页
农作物产量预测对政府规划国民经济的发展具有决定性作用,对于合理统筹种植策略以及减少水肥的浪费有着重要意义。影响农作物产量的因素众多,准确预测农作物产量具有非常重要的意义。气候是影响农作物产量的重要因素。以气候因素为依据... 农作物产量预测对政府规划国民经济的发展具有决定性作用,对于合理统筹种植策略以及减少水肥的浪费有着重要意义。影响农作物产量的因素众多,准确预测农作物产量具有非常重要的意义。气候是影响农作物产量的重要因素。以气候因素为依据,提出了一种基于改进长短期记忆神经网络的农作物产量时间序列预测的方法,将历史产量和气候因素相结合,以固定年份为单位对下一年农作物产量进行预测。实验结果表明,与长短期记忆神经网络、支持向量机方法进行对比,本方法在农作物产量时间序列预测中有较高的准确性。 展开更多
关键词 农作物产量预测 长短期记忆神经网络 深度学习 递归神经网络 气候因素
下载PDF
An Integrated Analysis of Yield Prediction Models:A Comprehensive Review of Advancements and Challenges
7
作者 Nidhi Parashar Prashant Johri +2 位作者 Arfat Ahmad Khan Nitin Gaur Seifedine Kadry 《Computers, Materials & Continua》 SCIE EI 2024年第7期389-425,共37页
The growing global requirement for food and the need for sustainable farming in an era of a changing climate and scarce resources have inspired substantial crop yield prediction research.Deep learning(DL)and machine l... The growing global requirement for food and the need for sustainable farming in an era of a changing climate and scarce resources have inspired substantial crop yield prediction research.Deep learning(DL)and machine learning(ML)models effectively deal with such challenges.This research paper comprehensively analyses recent advancements in crop yield prediction from January 2016 to March 2024.In addition,it analyses the effectiveness of various input parameters considered in crop yield prediction models.We conducted an in-depth search and gathered studies that employed crop modeling and AI-based methods to predict crop yield.The total number of articles reviewed for crop yield prediction using ML,meta-modeling(Crop models coupled with ML/DL),and DL-based prediction models and input parameter selection is 125.We conduct the research by setting up five objectives for this research and discussing them after analyzing the selected research papers.Each study is assessed based on the crop type,input parameters employed for prediction,the modeling techniques adopted,and the evaluation metrics used for estimatingmodel performance.We also discuss the ethical and social impacts of AI on agriculture.However,various approaches presented in the scientific literature have delivered impressive predictions,they are complicateddue to intricate,multifactorial influences oncropgrowthand theneed for accuratedata-driven models.Therefore,thorough research is required to deal with challenges in predicting agricultural output. 展开更多
关键词 Machine learning crop yield prediction deep learning remote sensing long short-term memory time series prediction systematic literature review
下载PDF
TrG2P:A transfer-learning-based tool integrating multi-trait data for accurate prediction of crop yield
8
作者 Jinlong Li Dongfeng Zhang +8 位作者 Feng Yang Qiusi Zhang Shouhui Pan Xiangyu Zhao Qi Zhang Yanyun Han Jinliang Yang Kaiyi Wang Chunjiang Zhao 《Plant Communications》 SCIE CSCD 2024年第7期16-27,共12页
Yield prediction is the primary goal of genomic selection(GS)-assisted crop breeding.Because yield is a complex quantitative trait,making predictions from genotypic data is challenging.Transfer learning can produce an... Yield prediction is the primary goal of genomic selection(GS)-assisted crop breeding.Because yield is a complex quantitative trait,making predictions from genotypic data is challenging.Transfer learning can produce an effective model for a target task by leveraging knowledge from a different,but related,source domain and is considered a great potential method for improving yield prediction by integrating multi-trait data.However,it has not previously been applied to genotype-to-phenotype prediction owing to the lack of an efficient implementation framework.We therefore developed TrG2P,a transfer-learning-based framework.TrG2P first employs convolutional neural networks(CNN)to train models using non-yield-trait phenotypic and genotypic data,thus obtaining pre-trained models.Subsequently,the convolutional layer parameters from these pre-trained models are transferred to the yield prediction task,and the fully connected layers are retrained,thus obtaining fine-tuned models.Finally,the convolutional layer and the first fully connected layer of the fine-tuned models are fused,and the last fully connected layer is trained to enhance prediction performance.We applied TrG2P to five sets of genotypic and phenotypic data from maize(Zea mays),rice(Oryza sativa),and wheat(Triticum aestivum)and compared its model precision to that of seven other popular GS tools:ridge regression best linear unbiased prediction(rrBLUP),random forest,support vector regression,light gradient boosting machine(LightGBM),CNN,DeepGS,and deep neural network for genomic prediction(DNNGP).TrG2P improved the accuracy of yield prediction by 39.9%,6.8%,and 1.8%in rice,maize,and wheat,respectively,compared with predictions generated by the best-performing comparison model.Our work therefore demonstrates that transfer learning is an effective strategy for improving yield prediction by integrating information from non-yield-trait data.We attribute its enhanced prediction accuracy to the valuable information available from traits associated with yield and to 展开更多
关键词 crop genotype to phenotype transfer learning yield prediction multi-trait
原文传递
基于生长度日和降水量的韩国饲用玉米产量预测模型构建 被引量:3
9
作者 彭京伦 王娟 +3 位作者 金抆主 曹武焕 金炳完 成庆一 《草业科学》 CAS CSCD 2018年第4期857-866,共10页
本研究基于韩国不同地区的气象数据和饲用全株玉米(Zea mays)产量的历史记录数据,利用一般线性模型进行了饲用全株玉米的干物质产量预测模型的构建。作物产量等相关数据采集自韩国农业协同组合中央会饲料作物研究课题报告,气象数据采集... 本研究基于韩国不同地区的气象数据和饲用全株玉米(Zea mays)产量的历史记录数据,利用一般线性模型进行了饲用全株玉米的干物质产量预测模型的构建。作物产量等相关数据采集自韩国农业协同组合中央会饲料作物研究课题报告,气象数据采集自韩国国家气象厅网站。经过4个步骤的数据整理,最终用于模型构建的数据集包含了22年间(1988-2011年)的775个数据点。以干物质产量为因变量,通过逐步回归分析,两个气象变量被选定为构建产量预测模型的最适气象变量。进一步,通过一般线性模型,构建了包含两个选定的气象变量和以虚拟变量形式考虑进模型的栽培地域变量的韩国饲用全株玉米产量预测模型:DMY=11.298SHAGDD-3.651SHP+1 089.870+Location。其中,DMY为饲用全株玉米的干物质产量,SHAGDD为播种到收获累积生长度日,SHP为播种到收获累积降水量。通过残差分析和10折交叉验证对所构建的模型进行了检验。根据此产量预测模型,可以发现作物生长期间的温度和降水量对饲用全株玉米的干物质产量有着显著的影响。因此,确定合理的播种和收获时间以使作物获得充分的生长对确保合理的作物产量有着重要意义。此外,基于韩国夏季降水相对集中的气象条件,选择拥有较好排水性的土地和较强耐涝性的作物品种,也是确保饲用全株玉米产量的重要因素。 展开更多
关键词 饲用全株玉米 气象数据 一般线性模型 产量预测模型
下载PDF
Crop Yield Prediction Using Machine Learning Approaches on a Wide Spectrum 被引量:3
10
作者 SVinson Joshua ASelwin Mich Priyadharson +5 位作者 Raju Kannadasan Arfat Ahmad Khan Worawat Lawanont Faizan Ahmed Khan Ateeq Ur Rehman Muhammad Junaid Ali 《Computers, Materials & Continua》 SCIE EI 2022年第9期5663-5679,共17页
The exponential growth of population in developing countries likeIndia should focus on innovative technologies in the Agricultural processto meet the future crisis. One of the vital tasks is the crop yield predictiona... The exponential growth of population in developing countries likeIndia should focus on innovative technologies in the Agricultural processto meet the future crisis. One of the vital tasks is the crop yield predictionat its early stage;because it forms one of the most challenging tasks inprecision agriculture as it demands a deep understanding of the growth patternwith the highly nonlinear parameters. Environmental parameters like rainfall,temperature, humidity, and management practices like fertilizers, pesticides,irrigation are very dynamic in approach and vary from field to field. In theproposed work, the data were collected from paddy fields of 28 districts in widespectrum of Tamilnadu over a period of 18 years. The Statistical model MultiLinear Regression was used as a benchmark for crop yield prediction, whichyielded an accuracy of 82% owing to its wide ranging input data. Therefore,machine learning models are developed to obtain improved accuracy, namelyBack Propagation Neural Network (BPNN), Support Vector Machine, andGeneral Regression Neural Networks with the given data set. Results showthat GRNN has greater accuracy of 97% (R2 = 0.97) with a normalizedmean square error (NMSE) of 0.03. Hence GRNN can be used for crop yieldprediction in diversified geographical fields. 展开更多
关键词 Machine learning crop yield prediction computer simulation and modelling
下载PDF
基于3DCNN-TCN的农作物产量预测 被引量:2
11
作者 张凯 龚龙庆 +1 位作者 贺兆 霍鹏程 《微电子学与计算机》 2023年第10期83-89,共7页
得益于遥感技术与相关监测技术的快速发展及应用,通过遥感图像挖掘出波段信息以来进行农作物产量预测在近些年这一领域受到更多的青睐.然而,影响农作物生长的多种波段信息受限于空间大小、时间差异会被各种降维技术处理,从而没有充分利... 得益于遥感技术与相关监测技术的快速发展及应用,通过遥感图像挖掘出波段信息以来进行农作物产量预测在近些年这一领域受到更多的青睐.然而,影响农作物生长的多种波段信息受限于空间大小、时间差异会被各种降维技术处理,从而没有充分利用数据的时空、波段特性.因此提出了一种用于农作物产量预测的深度学习架构用以解决这些问题,该模型结合了三维卷积网络(3DCNN)和时间卷积网络(TCN)以更好的捕捉遥感图像的时空信息和波段信息.此外,在新的损失函数中,还引入一个变量,用以消除作物产量标签分布不平衡的影响.最后,通过中国的玉米的产量数据预测验证了新模型.其结果与主要使用的深度学习方法进行比较.实验结果表明,本文所提出的方法可以提供比其他竞争方法更好的预测性能. 展开更多
关键词 农作物产量预测 3DCNN TCN
下载PDF
集对分析在作物产量年景预报中的应用 被引量:3
12
作者 杨祥珠 娄伟平 《中国农业气象》 CSCD 2008年第1期79-82,共4页
影响作物产量预报准确性的关鍵问题之一是自然条件下预报因子对作物产量影响的不确定性。本文针对作物产量预报的特点,应用集对分析中联系度的概念,将影响作物产量的预报因子分为适宜区间、影响不明显区间、不适宜区间和减产区间,进行... 影响作物产量预报准确性的关鍵问题之一是自然条件下预报因子对作物产量影响的不确定性。本文针对作物产量预报的特点,应用集对分析中联系度的概念,将影响作物产量的预报因子分为适宜区间、影响不明显区间、不适宜区间和减产区间,进行同异反分析,建立了基于集对分析的作物产量预报模型。并对新昌县小麦产量进行预报试验,结果表明,联系度的引进改进了预报因子的合理性,能提高小麦产量预报的准确性。 展开更多
关键词 作物产量预报 不确定性 集对分析 联系度
下载PDF
Application of Artificial Neural Network in Predicting Crop Yield: A Review 被引量:2
13
作者 Siti Khairunniza-Bejo Samihah Mustaffha Wan Ishak Wan Ismail 《Journal of Food Science and Engineering》 2014年第1期1-9,共9页
Agricultural system is very complex since it deals with large data situation which comes from a number of factors. A lot of techniques and approaches have been used to identify any interactions between factors that af... Agricultural system is very complex since it deals with large data situation which comes from a number of factors. A lot of techniques and approaches have been used to identify any interactions between factors that affecting yields with the crop performances. The application of neural network to the task of solving non-linear and complex systems is promising. This paper presents a review on the use of artificial neural network (ANN) in predicting crop yield using various crop performance factors. General overview on the application of ANN and the basic concept of neural network architecture are also presented. From the literature, it has been shown that ANN provides better interpretation of crop variability compared to the other methods. 展开更多
关键词 Artificial intelligent artificial neural network crop yield prediction.
下载PDF
Ensemble learning prediction of soybean yields in China based on meteorological data 被引量:1
14
作者 LI Qian-chuan XU Shi-wei +3 位作者 ZHUANG Jia-yu LIU Jia-jia ZHOU Yi ZHANG Ze-xi 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2023年第6期1909-1927,共19页
The accurate prediction of soybean yield is of great significance for agricultural production, monitoring and early warning.Although previous studies have used machine learning algorithms to predict soybean yield base... The accurate prediction of soybean yield is of great significance for agricultural production, monitoring and early warning.Although previous studies have used machine learning algorithms to predict soybean yield based on meteorological data,it is not clear how different models can be used to effectively separate soybean meteorological yield from soybean yield in various regions. In addition, comprehensively integrating the advantages of various machine learning algorithms to improve the prediction accuracy through ensemble learning algorithms has not been studied in depth. This study used and analyzed various daily meteorological data and soybean yield data from 173 county-level administrative regions and meteorological stations in two principal soybean planting areas in China(Northeast China and the Huang–Huai region), covering 34 years.Three effective machine learning algorithms(K-nearest neighbor, random forest, and support vector regression) were adopted as the base-models to establish a high-precision and highly-reliable soybean meteorological yield prediction model based on the stacking ensemble learning framework. The model's generalizability was further improved through 5-fold crossvalidation, and the model was optimized by principal component analysis and hyperparametric optimization. The accuracy of the model was evaluated by using the five-year sliding prediction and four regression indicators of the 173 counties, which showed that the stacking model has higher accuracy and stronger robustness. The 5-year sliding estimations of soybean yield based on the stacking model in 173 counties showed that the prediction effect can reflect the spatiotemporal distribution of soybean yield in detail, and the mean absolute percentage error(MAPE) was less than 5%. The stacking prediction model of soybean meteorological yield provides a new approach for accurately predicting soybean yield. 展开更多
关键词 meteorological factors ensemble learning crop yield prediction machine learning county-level
下载PDF
Multimodal Machine Learning Based Crop Recommendation and Yield Prediction Model
15
作者 P.S.S.Gopi M.Karthikeyan 《Intelligent Automation & Soft Computing》 SCIE 2023年第4期313-326,共14页
Agriculture plays a vital role in the Indian economy.Crop recommen-dation for a specific region is a tedious process as it can be affected by various variables such as soil type and climatic parameters.At the same time... Agriculture plays a vital role in the Indian economy.Crop recommen-dation for a specific region is a tedious process as it can be affected by various variables such as soil type and climatic parameters.At the same time,crop yield prediction was based on several features like area,irrigation type,temperature,etc.The recent advancements of artificial intelligence(AI)and machine learning(ML)models pave the way to design effective crop recommendation and crop pre-diction models.In this view,this paper presents a novel Multimodal Machine Learning Based Crop Recommendation and Yield Prediction(MMML-CRYP)technique.The proposed MMML-CRYP model mainly focuses on two processes namely crop recommendation and crop prediction.At the initial stage,equilibrium optimizer(EO)with kernel extreme learning machine(KELM)technique is employed for effectual recommendation of crops.Next,random forest(RF)tech-nique was executed for predicting the crop yield accurately.For reporting the improved performance of the MMML-CRYP system,a wide range of simulations were carried out and the results are investigated using benchmark dataset.Experi-mentation outcomes highlighted the significant performance of the MMML-CRYP approach on the compared approaches with maximum accuracy of 97.91%. 展开更多
关键词 AGRICULTURE crop recommendation yield prediction machine learning artificial intelligence
下载PDF
灰色动态模型在油料作物产量预测中的应用 被引量:1
16
作者 刘仕英 赵星 《中国油料》 CSCD 北大核心 1990年第2期53-57,共5页
本文运用灰色系统理论建立了常德市油料作物产量的预测模型,其模型的精度达到了一级水平,模型值的精度在95%以上。模型的预测值评估结果良好,说明油料作物产量的预测值是可信的。
关键词 油料作物 产量 预测 灰色动态模型
下载PDF
A Hybrid Approach of TLBO and EBPNN for Crop YieldPrediction Using Spatial Feature Vectors
17
作者 Preeti Tiwari Piyush Shukla 《Journal on Artificial Intelligence》 2019年第2期45-58,共14页
The prediction of crop yield is one of the important factor and also challenging,to predict the future crop yield based on various criteria’s.Many advanced technologies are incorporated in the agricultural processes,... The prediction of crop yield is one of the important factor and also challenging,to predict the future crop yield based on various criteria’s.Many advanced technologies are incorporated in the agricultural processes,which enhances the crop yield production efficiency.The process of predicting the crop yield can be done by taking agriculture data,which helps to analyze and make important decisions before and during cultivation.This paper focuses on the prediction of crop yield,where two models of machine learning are developed for this work.One is Modified Convolutional Neural Network(MCNN),and the other model is TLBO(Teacher Learning Based Optimization)-a Genetic algorithm which reduces the input size of data.In this work,some spatial information used for analysis is the Normalized Difference Vegetation Index,Standard Precipitation Index and Vegetation Condition Index.TLBO finds some best feature value set in the data that represents the specific yield of the crop.So,these selected feature valued set is passed in the Error Back Propagation Neural Network for learning.Here,the training was done in such a way that all set of features were utilized in pair with their yield value as output.For increasing the reliability of the work whole experiment was done on a real dataset from Madhya Pradesh region of country India.The result shows that the proposed model has overcome various evaluation parameters on different scales as compared to previous approaches adopted by researchers. 展开更多
关键词 crop yield prediction data mining MACHINELEARNING vegetation index TLBO.
下载PDF
浅谈农业气象作物产量预报
18
作者 王林凤 孙丽莉 +1 位作者 富饶 栗艳杰 《现代农业研究》 2018年第6期17-18,共2页
回顾了农业气象作物产量预测的发展历程,阐述了农业气象作物产量预测业务支持系统的特点和丰富的农业气象作物产量预测的特点更新,及时传输,综合预测技术和操作规范。本文分析了当前农业生产中存在的问题,如作物资源估测困难等。分析了... 回顾了农业气象作物产量预测的发展历程,阐述了农业气象作物产量预测业务支持系统的特点和丰富的农业气象作物产量预测的特点更新,及时传输,综合预测技术和操作规范。本文分析了当前农业生产中存在的问题,如作物资源估测困难等。分析了产量预测模型的物理化学和动态特性,以及产量预测的全球化趋势。基于机遇和挑战气象部门应充分发挥自身的资源优势,解决存在的问题。 展开更多
关键词 作物产量预测 作战支持系统 资源优势
下载PDF
Reducing deep learning network structure through variable reduction methods in crop modeling
19
作者 Babak Saravi A.Pouyan Nejadhashemi +1 位作者 Prakash Jha Bo Tang 《Artificial Intelligence in Agriculture》 2021年第1期196-207,共12页
Crop models are widely used to predict plant growth,water input requirements,and yield.However,existing models are very complex and require hundreds of variables to perform accurately.Due to these shortcomings,large-s... Crop models are widely used to predict plant growth,water input requirements,and yield.However,existing models are very complex and require hundreds of variables to perform accurately.Due to these shortcomings,large-scale applications of crop models are limited.In order to address these limitations,reliable crop models were developed using a deep neural network(DNN)–a new approach for predicting crop yields.In addition,the number of required input variables was reduced using three common variable selection techniques:namely Bayesian variable selection,Spearman's rank correlation,and Principal Component Analysis Feature Extraction.The reduced-variableDNN modelswere capable of estimating future crop yields for 10,000,000 differentweather and irrigation scenarios while maintaining comparable accuracy levels to the original model that used all input variables.To establish clear superiority of the methodology,the results were also compared with a very recent feature selection algorithm called min-redundancy max-relevance(mRMR).The results of this study showed that the Bayesian variable selection was the best method for achieving the aforementioned goals.Specifically,the final Bayesian-based DNN model with a structure of 10 neurons in 5 layers performed very similarly(78.6%accuracy)to the original DNN cropmodel with 400 neurons in 10 layers,even though the size of the neural network was reduced by 80-fold.This effort can help promote sustainable agricultural intensifications through the large-scale application of crop models. 展开更多
关键词 Deep learning Artificial intelligent Variable reduction crop modeling yield prediction IRRIGATION
原文传递
基于作物系数与水分生产函数的向日葵产量预测 被引量:14
20
作者 云文丽 侯琼 +2 位作者 李建军 苗百岭 冯旭宇 《应用气象学报》 CSCD 北大核心 2015年第6期705-713,共9页
利用河套灌区向日葵2012年田间水分、分期播种试验数据和两个站点的农业气象历史资料,研究基于向日葵作物系数和水分生产函数的产量预测方法。结果表明:向日葵标准作物系数在生育期内的变化规律是前期小、中期大、后期小,最高值为1.21,... 利用河套灌区向日葵2012年田间水分、分期播种试验数据和两个站点的农业气象历史资料,研究基于向日葵作物系数和水分生产函数的产量预测方法。结果表明:向日葵标准作物系数在生育期内的变化规律是前期小、中期大、后期小,最高值为1.21,出现在开花期。标准作物系数与出苗后日数和大于0℃积温有很好的二次和三次多项式关系,拟合优度在0.93以上。在分析相对叶面积指数和作物系数关系的基础上,提出标准作物系数的相对叶面积指数订正方法,得出河套灌区向日葵作物系数的动态计算式,为水分生产函数中实际蒸散量的计算提供支撑。建立以Jensen模型为基础的向日葵水分生产函数,得到对水分亏缺的敏感顺序从高到低是开花期、花序形成期、成熟期、苗期。综合应用向日葵作物系数方程和水分生产函数模型计算分期播种产量,与实际产量分别相差4.4%和4.1%,初步证明该文提出的方法对产量预测较为理想,在该地区具有很好的适用性。 展开更多
关键词 作物系数 相对叶面积指数订正 耗水量 水分生产函数 产量预测
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部