摘要
得益于遥感技术与相关监测技术的快速发展及应用,通过遥感图像挖掘出波段信息以来进行农作物产量预测在近些年这一领域受到更多的青睐.然而,影响农作物生长的多种波段信息受限于空间大小、时间差异会被各种降维技术处理,从而没有充分利用数据的时空、波段特性.因此提出了一种用于农作物产量预测的深度学习架构用以解决这些问题,该模型结合了三维卷积网络(3DCNN)和时间卷积网络(TCN)以更好的捕捉遥感图像的时空信息和波段信息.此外,在新的损失函数中,还引入一个变量,用以消除作物产量标签分布不平衡的影响.最后,通过中国的玉米的产量数据预测验证了新模型.其结果与主要使用的深度学习方法进行比较.实验结果表明,本文所提出的方法可以提供比其他竞争方法更好的预测性能.
Thanks to the rapid development and application of remote sensing technology and related monitoring technology,crop yield prediction has been more favored in this field in recent years since the band information was mined from remote sensing images.However,due to the limitation of space size and time difference,the multi band information affecting crop growth will be processed by various dimension reduction technologies,so the time-space and band characteristics of data are not fully utilized.Therefore,a deep learning architecture for crop yield prediction is proposed to solve these problems.This model combines 3D Convolution Network and Temporal Convolution Network to better capture the spatio-temporal information and band information of remote sensing images.In addition,a variable is introduced into the new loss function to eliminate the influence of unbalanced distribution of crop yield labels.Finally,the new model was validated by the prediction of maize yield data in China.The results were compared with the main depth learning methods.The experimental results show that the proposed method can provide better prediction performance than other competing methods.
作者
张凯
龚龙庆
贺兆
霍鹏程
ZHANG Kai;GONG Longqing;HE Zhao;HUO Pengcheng(Xi’an Microelectronics Technology Institute,Xi’an 710054,Shaanxi,China)
出处
《微电子学与计算机》
2023年第10期83-89,共7页
Microelectronics & Computer
关键词
农作物产量预测
3DCNN
TCN
Crop yield prediction
3D Convolution Network
Temporal Convolution Network