Tumor models were simulated in purebred Beagles at the T9-10 levels of the spinal cord and treated with spinal image-guided radiation therapy or conventional radiation therapy with 50 or 70 Gy total radiation. Three m...Tumor models were simulated in purebred Beagles at the T9-10 levels of the spinal cord and treated with spinal image-guided radiation therapy or conventional radiation therapy with 50 or 70 Gy total radiation. Three months after radiation, neuronal injury at the T9-10 levels was observed, including reversible injury induced by spinal image-guided radiation therapy and apoptosis induced by conventional radiation therapy. The number of apoptotic cells and expression of the proapoptotic protein Fas were significantly reduced, but expression of the anti-apoptotic protein heat shock protein 70 was significantly increased after image-guided radiation therapy compared with the conventional method of the same radiation dose. Moreover, the spinal cord cell apoptotic index positively correlated with the ratio of Fas/heat shock protein 70. These findings indicate that 3 months of radiation therapy can induce a late response in the spinal cord to radiation therapy; image-guided radiation therapy is safer and results in less neuronal injury compared with conventional radiation therapy.展开更多
基金supported by the National Natural Science Foundation of China,No.81060182the Natural Science Foundation of Xinjiang Uygur Autonomous Region,No.2012211B34the Key Technology Research and Development and Major Program of Xinjiang Uygur Autonomous Region,No.200833116
文摘Tumor models were simulated in purebred Beagles at the T9-10 levels of the spinal cord and treated with spinal image-guided radiation therapy or conventional radiation therapy with 50 or 70 Gy total radiation. Three months after radiation, neuronal injury at the T9-10 levels was observed, including reversible injury induced by spinal image-guided radiation therapy and apoptosis induced by conventional radiation therapy. The number of apoptotic cells and expression of the proapoptotic protein Fas were significantly reduced, but expression of the anti-apoptotic protein heat shock protein 70 was significantly increased after image-guided radiation therapy compared with the conventional method of the same radiation dose. Moreover, the spinal cord cell apoptotic index positively correlated with the ratio of Fas/heat shock protein 70. These findings indicate that 3 months of radiation therapy can induce a late response in the spinal cord to radiation therapy; image-guided radiation therapy is safer and results in less neuronal injury compared with conventional radiation therapy.