In this paper, we study the optimal time decay rate of isentropic Navier-Stokes equations under the low regularity assumptions about initial data. In the previous works about optimal time decay rate, the initial data ...In this paper, we study the optimal time decay rate of isentropic Navier-Stokes equations under the low regularity assumptions about initial data. In the previous works about optimal time decay rate, the initial data need to be small in H^[N/2]+2(R^N). Our work combined negative Besov space estimates and the conventional energy estimates in Besov space framework which is developed by Danchim Through our methods, we can get optimal time decay rate with initial data just small in B^N/2-1,N/2+1∩^N/2-1,N/2 and belong to some negative Besov space (need not to be small). Finally, combining the recent results in [25] with our methods, we only need the initial data to be small in homogeneous Besov space B^N/2-2,N/2 ∩B^N/2-1 to get the optimal time decay rate in space L2.展开更多
Fourier analysis methods and in particular techniques based on Littlewood-Paley decomposition and paraproduct have known a growing interest recently for the study of nonlinear evolutionary equations.In this survey pap...Fourier analysis methods and in particular techniques based on Littlewood-Paley decomposition and paraproduct have known a growing interest recently for the study of nonlinear evolutionary equations.In this survey paper,we explain how these methods may be implemented so as to study the compresible Navier-Stokes equations in the whole space.We shall investigate both the initial value problem in critical Besov spaces and the low Mach number asymptotics.展开更多
The aims of this paper are to discuss global existence and uniqueness of strong solution for a class of isentropic compressible navier-Stokes equations with non-Newtonian in one-dimensional bounded intervals. We prove...The aims of this paper are to discuss global existence and uniqueness of strong solution for a class of isentropic compressible navier-Stokes equations with non-Newtonian in one-dimensional bounded intervals. We prove two global existence results on strong solutions of isentropic compressible Navier-Stokes equations. The first result shows only the existence. And the second one shows the existence and uniqueness result based on the first result, but the uniqueness requires some compatibility condition.展开更多
We study the Green's function for a general hyperbolic-parabolic system, including the Navier-Stokes equations for compressible fluids and the equations for magnetohydrodynamics. More generally, we consider general s...We study the Green's function for a general hyperbolic-parabolic system, including the Navier-Stokes equations for compressible fluids and the equations for magnetohydrodynamics. More generally, we consider general systems under the basic Kawashima- Shizuta type of conditions. The first result is to make precise the secondary waves with subscale structure, revealing the nature of coupling of waves pertaining to different characteristic families. The second result is on the continuous differentiability of the Green's function with respect to a small parameter when the coefficients of the system are smooth functions of that parameter. The results significantly improve previous results obtained by the authors.展开更多
We show the blow-up of smooth solutions to a non-isothermal model of capillary compressible fluids in arbitrary space dimensions with initial density of compact support. This is an extension of Xin's result [Xin, Z....We show the blow-up of smooth solutions to a non-isothermal model of capillary compressible fluids in arbitrary space dimensions with initial density of compact support. This is an extension of Xin's result [Xin, Z.: Blow-up of smooth solutions to the compressible Navier-Stokes equations with compact density. Comm. Pure Appl. Math., 51, 229-240 (1998)] to the capillary case but we do not need the condition that the entropy is bounded below. Moreover, from the proof of Theorem 1.2, we also obtain the exact relationship between the size of support of the initial density and the life span of the solutions. We also present a sufficient condition on the blow-up of smooth solutions to the compressible fluid models of Korteweg type when the initial density is positive but has a decay at infinity.展开更多
In the present paper, the efficiency of an enhanced formulation of the stabilized corrective smoothed particle method (CSPM) for simulation of shock wave propagation and reflection from fixed and moving solid bounda...In the present paper, the efficiency of an enhanced formulation of the stabilized corrective smoothed particle method (CSPM) for simulation of shock wave propagation and reflection from fixed and moving solid boundaries in compressible fluids is investigated. The Lagrangian nature and its accuracy for imposing the boundary conditions are the two main reasons for adoption of CSPM. The governing equations are further modified for imposition of moving solid boundary conditions. In addition to the traditional artificial viscosity, which can remove numerically induced abnormal jumps in the field values, a velocity field smoothing technique is introduced as an efficient method for stabilizing the solution. The method has been implemented for one- and two-dimensional shock wave propagation and reflection from fixed and moving boundaries and the results have been compared with other available solutions. The method has also been adopted for simulation of shock wave propagation and reflection from infinite and finite solid boundaries.展开更多
基金Supported by the National Natural Science Foundation of China(Grant No.11501439)the Postdoctoral Science Foundation Pro ject of China(Grant No.2017T100733)
文摘In this paper, we study the optimal time decay rate of isentropic Navier-Stokes equations under the low regularity assumptions about initial data. In the previous works about optimal time decay rate, the initial data need to be small in H^[N/2]+2(R^N). Our work combined negative Besov space estimates and the conventional energy estimates in Besov space framework which is developed by Danchim Through our methods, we can get optimal time decay rate with initial data just small in B^N/2-1,N/2+1∩^N/2-1,N/2 and belong to some negative Besov space (need not to be small). Finally, combining the recent results in [25] with our methods, we only need the initial data to be small in homogeneous Besov space B^N/2-2,N/2 ∩B^N/2-1 to get the optimal time decay rate in space L2.
文摘Fourier analysis methods and in particular techniques based on Littlewood-Paley decomposition and paraproduct have known a growing interest recently for the study of nonlinear evolutionary equations.In this survey paper,we explain how these methods may be implemented so as to study the compresible Navier-Stokes equations in the whole space.We shall investigate both the initial value problem in critical Besov spaces and the low Mach number asymptotics.
文摘The aims of this paper are to discuss global existence and uniqueness of strong solution for a class of isentropic compressible navier-Stokes equations with non-Newtonian in one-dimensional bounded intervals. We prove two global existence results on strong solutions of isentropic compressible Navier-Stokes equations. The first result shows only the existence. And the second one shows the existence and uniqueness result based on the first result, but the uniqueness requires some compatibility condition.
基金The research of the first author was partially supported by NSC Grant 96-2628-M-001-011 and NSF Grant DMS-0709248The research of the second author was partially supported byNSF Grant DMS-0207154
文摘We study the Green's function for a general hyperbolic-parabolic system, including the Navier-Stokes equations for compressible fluids and the equations for magnetohydrodynamics. More generally, we consider general systems under the basic Kawashima- Shizuta type of conditions. The first result is to make precise the secondary waves with subscale structure, revealing the nature of coupling of waves pertaining to different characteristic families. The second result is on the continuous differentiability of the Green's function with respect to a small parameter when the coefficients of the system are smooth functions of that parameter. The results significantly improve previous results obtained by the authors.
基金Supported by National Natural Science Foundation of China-NSAF (Grant No. 10976026)
文摘We show the blow-up of smooth solutions to a non-isothermal model of capillary compressible fluids in arbitrary space dimensions with initial density of compact support. This is an extension of Xin's result [Xin, Z.: Blow-up of smooth solutions to the compressible Navier-Stokes equations with compact density. Comm. Pure Appl. Math., 51, 229-240 (1998)] to the capillary case but we do not need the condition that the entropy is bounded below. Moreover, from the proof of Theorem 1.2, we also obtain the exact relationship between the size of support of the initial density and the life span of the solutions. We also present a sufficient condition on the blow-up of smooth solutions to the compressible fluid models of Korteweg type when the initial density is positive but has a decay at infinity.
文摘In the present paper, the efficiency of an enhanced formulation of the stabilized corrective smoothed particle method (CSPM) for simulation of shock wave propagation and reflection from fixed and moving solid boundaries in compressible fluids is investigated. The Lagrangian nature and its accuracy for imposing the boundary conditions are the two main reasons for adoption of CSPM. The governing equations are further modified for imposition of moving solid boundary conditions. In addition to the traditional artificial viscosity, which can remove numerically induced abnormal jumps in the field values, a velocity field smoothing technique is introduced as an efficient method for stabilizing the solution. The method has been implemented for one- and two-dimensional shock wave propagation and reflection from fixed and moving boundaries and the results have been compared with other available solutions. The method has also been adopted for simulation of shock wave propagation and reflection from infinite and finite solid boundaries.