摘要
考虑具耗散项 2 αu(α>0 )可压缩流体方程组 Cauchy问题经典解整体存在性与解的奇性形成 .如果熵和 α小于声波能量 ,证明了其经典解必在有限时间内产生激波 ,进一步给出了经典解的生命区间跨度估计 .
The global existence and formation of singularities of classical solutions to the Cauchy problem in one dimensionalcompressible fluids with dissipative term 2au(α>0) are considered. It is proved that if the initial amount of the entropy and a are smaller than that of sound waves, then classical (periodic) solutions will develop shocks in a finite time. Moreover, some quantitative estimates of lifespan of classical (periodic) solutions and a result on global existence of classical solutions are given.
出处
《郑州大学学报(理学版)》
CAS
2002年第3期1-7,共7页
Journal of Zhengzhou University:Natural Science Edition
基金
河南省创新人才基金资助项目
河南省骨干教师资助项目