期刊文献+

具耗散一维可压流体方程组奇性形成(英文)

Formation of Singularities in One- dimensional Compressible Fluids with Dissipative Term
下载PDF
导出
摘要 考虑具耗散项 2 αu(α>0 )可压缩流体方程组 Cauchy问题经典解整体存在性与解的奇性形成 .如果熵和 α小于声波能量 ,证明了其经典解必在有限时间内产生激波 ,进一步给出了经典解的生命区间跨度估计 . The global existence and formation of singularities of classical solutions to the Cauchy problem in one dimensionalcompressible fluids with dissipative term 2au(α>0) are considered. It is proved that if the initial amount of the entropy and a are smaller than that of sound waves, then classical (periodic) solutions will develop shocks in a finite time. Moreover, some quantitative estimates of lifespan of classical (periodic) solutions and a result on global existence of classical solutions are given.
出处 《郑州大学学报(理学版)》 CAS 2002年第3期1-7,共7页 Journal of Zhengzhou University:Natural Science Edition
基金 河南省创新人才基金资助项目 河南省骨干教师资助项目
关键词 可压流体方程组 奇性 耗散 CAUCHY问题 经典解 整体存在性 生命区间跨度估计 singularity compressible fluids dissipation Cauchy problem
  • 相关文献

参考文献5

  • 1[1]Majda A. Compressible fluid flow and systems of conservation laws in several space-variables. Springer-Verlag, New York, 1984. 被引量:1
  • 2[2]Li Ta-tsien. Global Classical Solutions for Quasilinear Hyperbolic Systems, Research in Applied Mathematics 32. MASSON/John Wiley, 1994. 被引量:1
  • 3[3]Hsiao Ling, Serre D, Global existence of solutions for the systems of compressible adiabatic flow through porous media. SIAM J Math Anal, 1996,27: 70~77. 被引量:1
  • 4[4]Lui Fagui, Kong Dexing. Nonlinear waves for the systems of compressible adiabatic flow through media (to appear in Appl Math Mech). 被引量:1
  • 5[5]Zheng Yongshu. Global smooth solutions for systems of nonisentropic gas dynamics with dissipation term. Chinese J Contemp Math, 1996,17: 127~135. 被引量:1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部