期刊文献+

任意大初值等温相对论欧拉方程组的奇性形成问题

Singularities Formation to the Isothermal Relativistic Euler Equations with Arbitrary Initial Data
下载PDF
导出
摘要 主要证明了当初始值受到挤压以及初始流体向外流出时等温相对论欧拉方程组光滑解的奇性形成问题.通过引入与解有关的泛函,证明该泛函满足适当的微分不等式,同时证明该微分不等式的解会发生奇性,继而得到等温相对论欧拉方程组解的奇性形成结果. The singularities formation of the isothermal relativistic Euler equations was testified in the condition of the compression of the initial data and the external flow of the initial fluid. By introducing proper functionals coming from the smooth solutions, it was proved that the functionals would match the differential inequalities, and the singularities would occur in the solutions of the differential inequalities. Thus, the singularities formation results were obtained.
作者 耿永才 刘健
出处 《上海应用技术学院学报(自然科学版)》 2015年第1期95-98,共4页 Journal of Shanghai Institute of Technology: Natural Science
基金 国家自然科学基金资助项目(11201308) 上海市创新基金资助项目(13ZZ136) 上海市优秀青年基金资助项目(ZZyyy12025)
关键词 等温相对论欧拉方程组 光滑解 奇性形成 isothermal relativistic Euler equations smooth solutions singularities formation
  • 相关文献

参考文献14

  • 1Anile A M. Relativistic fluids and magneto-fluids IMp. New York, Cambridge Monographs on Mathe- matical Physics.. Cambridge University Press, 1989 80-82. 被引量:1
  • 2Landau L D, Lifchitz M. Fluid mechnics EM]. 2nd ed. Oxford: Pergamon, 1987.. 505-512. 被引量:1
  • 3Li T, Qin T. Physics and parital differential Equa- tions[M]. 2nd ed. Beijing: Higher Eudcation Press, 2005.. 183-t96. 被引量:1
  • 4Smoller J, Temple B. Global solutions of the relativ- istic Euller equation[-J~. Commun Math Phys, 1993, 156 .. 67-99. 被引量:1
  • 5Lu Min, Ukai S, Non-relativistic global limits of weak solutions of the relativistic Euler equation[J]. J Math Kyoto Univ, 1998, 38(3): 525-537. 被引量:1
  • 6Chen G Q, Li Y C. Relativistic Euler equations for isentropic {luids~ Stability of Riemann solutions with large oscillation[-J]. Z Angew Math Phys, 2004, 55 (6) : 903-926. 被引量:1
  • 7Li Y C, Feng D, Wang Z. Global entropy solutiont to the relativistic Euler equations for a class of larg1 initial dataEJ]. Z Angew Math Phys, 2005, 56(2).1 239-253. /. 被引量:1
  • 8Chen J. Conservation Laws for the relativistic p-sys tem[-J~. Commu Partial Diff Eqs, 1995, 20(9/10) 1605-1646. 被引量:1
  • 9Chen G Q, Li Y C. Stability of Riemann solutions with large oscillation for the relativistic Euler equa- tions[J]. J Diff Eqs, 2004, 202(2) : 332-353. 被引量:1
  • 10Lax P D. Hyperbolic systems of conservation laws and the mathematical theory of shock waves E M~.New York: Society for Industrial and Appl Math Philadelphia, 1973. 33-38. 被引量:1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部