摘要
主要证明了当初始值受到挤压以及初始流体向外流出时等温相对论欧拉方程组光滑解的奇性形成问题.通过引入与解有关的泛函,证明该泛函满足适当的微分不等式,同时证明该微分不等式的解会发生奇性,继而得到等温相对论欧拉方程组解的奇性形成结果.
The singularities formation of the isothermal relativistic Euler equations was testified in the condition of the compression of the initial data and the external flow of the initial fluid. By introducing proper functionals coming from the smooth solutions, it was proved that the functionals would match the differential inequalities, and the singularities would occur in the solutions of the differential inequalities. Thus, the singularities formation results were obtained.
出处
《上海应用技术学院学报(自然科学版)》
2015年第1期95-98,共4页
Journal of Shanghai Institute of Technology: Natural Science
基金
国家自然科学基金资助项目(11201308)
上海市创新基金资助项目(13ZZ136)
上海市优秀青年基金资助项目(ZZyyy12025)
关键词
等温相对论欧拉方程组
光滑解
奇性形成
isothermal relativistic Euler equations
smooth solutions
singularities formation