摘要
研究了一维黏性可压缩流体动力学动力学方程组,给出了在小扰动条件冲击波解的渐近稳定性。计算了在初始扰动相当小的情况下冲击波解的叠加,通过局部解的存在唯一性分析和先验估计,证明了叠加得到冲击波解在全局范围内是渐近稳定的。证明通过能量估计方法给出。
A one-dimensional model system of compressible viscous dynamic fluids has been investigated, and the asymptotic stability of the shock wave has been established under conditions of small perturbation. A superposition of the shock wave has been derived under conditions where the initial disturbance is sufficiently small. By means of existence and uniqueness of the local solution and the priori estimates, the superposition of theshock wave is shown to have asymptotic, stability. The proof is based on the elementary energy method.
出处
《北京化工大学学报(自然科学版)》
EI
CAS
CSCD
北大核心
2007年第5期557-560,共4页
Journal of Beijing University of Chemical Technology(Natural Science Edition)
关键词
黏性可压缩流体
冲击波
渐近稳定性
能量方法
viscous compressible fluids
shock wave
asymptotic stability
energy method