期刊文献+

一维黏性可压缩流体冲击波解的渐近稳定性 被引量:4

Asymptotic stability of shock wave solutions of a one-dimensional model system for compressible viscous fluids
下载PDF
导出
摘要 研究了一维黏性可压缩流体动力学动力学方程组,给出了在小扰动条件冲击波解的渐近稳定性。计算了在初始扰动相当小的情况下冲击波解的叠加,通过局部解的存在唯一性分析和先验估计,证明了叠加得到冲击波解在全局范围内是渐近稳定的。证明通过能量估计方法给出。 A one-dimensional model system of compressible viscous dynamic fluids has been investigated, and the asymptotic stability of the shock wave has been established under conditions of small perturbation. A superposition of the shock wave has been derived under conditions where the initial disturbance is sufficiently small. By means of existence and uniqueness of the local solution and the priori estimates, the superposition of theshock wave is shown to have asymptotic, stability. The proof is based on the elementary energy method.
出处 《北京化工大学学报(自然科学版)》 EI CAS CSCD 北大核心 2007年第5期557-560,共4页 Journal of Beijing University of Chemical Technology(Natural Science Edition)
关键词 黏性可压缩流体 冲击波 渐近稳定性 能量方法 viscous compressible fluids shock wave asymptotic stability energy method
  • 相关文献

参考文献5

  • 1MATSUMURA A,NISHIHARA K.On the stability of travelling wave solutions of a one-dimensional model system for compressible viscous gas[J].Japan J Appl Math,1985,2:17-25. 被引量:1
  • 2Xiao-ding ShiDepartment of Mathematics and Computer Science, School of Science, Beijing University of Chemical Technology, Beijing 100029, China.On the Stability of Rarefaction Wave Solutions for Viscous p-system with Boundary Effect[J].Acta Mathematicae Applicatae Sinica,2003,19(2):341-352. 被引量:6
  • 3MATSUMURA A.Inflow and outflow problems in the half space for a one-dimensional isentropic model system of compressible viscous gas[J].Nonlinear Analysis,2001,47:4269-4282. 被引量:1
  • 4HUANG Feimin,MATSUMURA A,SHI Xiaoding.Viscous shock wave and buondary layer solution to an inflow problem for compressible viscous gas[J].Commun Math Phys,2003,239:261-285. 被引量:1
  • 5HUANG Feimin,MATSUMURA A,SHI Xiaoding.On the stability of contact discontinuity for compressible navier-stokes equation with free boundary[J].Osaka J Math,2004,41:193-210. 被引量:1

二级参考文献16

  • 1Huang, F.M., Matsumura, A., Shi, X.D. Viscous shock wave and boundary layer solution to an infolw problem for compressible viscous gas. Commun. Math. Phys., to appear. 被引量:1
  • 2Kawashima, S., Nikkuni, Y. Stability of stationary solutions to the half-space problem for the discrete Boltzmann equation with multiple collision. Kyushu J. Math., 54(2): 233-255 (2000). 被引量:1
  • 3Kawashima, S., Nishibata, S. Stability of stationary waves for compressible Navier-Stokes equations in the half space. Preprint. 被引量:1
  • 4Liu, T.P. Nonlinear stability of shock wave for viscous conservation laws. Mem. Amer. Math. Soc., 56,1985. 被引量:1
  • 5Liu, T.P., Matsumura, A., Nishihara, K. Behaviors of solutions for the Burgers equation with boundary corresponding to rarefaction waves. SIAM J. Math. Anal. 29:293-308 (1998). 被引量:1
  • 6Matsumura, A. Inflow and outflow problems in the half space for a one-dimensional isentropic model system of compressible viscous gas. Proceedings of IMS Conference on Differential Equations from Mechnics, Hong Kong, 1999, to appear. 被引量:1
  • 7Matsumura, A., Mei, M. Convergence to travelling fronts of solutions of the p-system with viscosity in the presence of a boundary. Arch. Rat. Mech. Anal., 146:1-22 (1999). 被引量:1
  • 8Matsumura, A, Nishihara, K. On the stability of traveling wave solutions of a one-dimensional model system for compressible viscous gas. Japan J. Appl. Math., 2:17-25 (1985). 被引量:1
  • 9Matsumura, A., Nishihara, K. Asymptotics toward the rarefaction wave of the solutions of a one-dimensional model system for compressible viscous gas. dapan d. Appl. Math., 3:1-13 (1986). 被引量:1
  • 10Matsumura, A., Nishihara, K. Global stability of the rarefaction wave of a one-dimensional model system for compressible viscous gas. Commun. Math. Phys., 144:325-335 (1992). 被引量:1

共引文献5

同被引文献16

  • 1杨翠,施小丁.Vander Waals流体的大时间行为[J].北京化工大学学报(自然科学版),2004,31(3):87-89. 被引量:2
  • 2Mei M, Wong Y S, Liu L P. Phase transitions in a couped viscoelastic system with periodic initial-boundary condition( Ⅰ )[ J]. Discrete and Continuous Dynamical Systems-Series B, 2007, 7 : 825 - 837. 被引量:1
  • 3Mei M, Wong Y S, Liu L P. Phase transitions in a couped viscoelastic system with periodic initial-boundary condition( Ⅱ)[J]. Discrete and Continuous Dynamical Systems-Series B, 2007, 7:839 - 857. 被引量:1
  • 4Chen X, Wang X P. Phase transition near a liquid-gas coexistence equilibrium [ J]. Arch Rational Mech Anal, 1984,86:317 -351. 被引量:1
  • 5Mei M, Wong Y S, Liu L P. Phase transitions in a cou- ped viscoelastic system with periodic initial-boundary con- dition ( I ): existence and uniform boundedness [ J ]. Discrete and Continuous Dynamical Systems Series B, 2007, 7(4): 825-837. 被引量:1
  • 6Mei M, Wong Y S, Liu L P. Phase transitions in a cou- ped viscoelastic system with periodic initial-boundary con- dition( Ⅱ ) : convergence [ J ]. Discrete and Continuous Dynamical Systems Series B, 2007, 7 (4) : 839-857. 被引量:1
  • 7Mei M, Wong Y S, Liu L P. Stationary solutions of phase transitions in a coupled viscoelastic system [ M ] //Roux I N. Nonlinear Analysis Research Trends, New York: No- va Science Publishers Inc, 2009: 277-293. 被引量:1
  • 8Matsumura A, Nishihara K. On the stability of travelling wave solutions of a one-dimensional model system for compressible viscous gas[J ]. Japan J Appl Math, 1985, 2:17-25. 被引量:1
  • 9Kawashima S, Matsumura A. Asymptotic stability of traveling wave solutions of systems for one-dimensional gas motion [ J ]. Commun Math Phys, 1985, 101:97 - 127. 被引量:1
  • 10Matsumura A, Nishida T. The intial value problem for the equations of motion of viscous and heateonductive gases[J]. Math Kyoto Univ, 1980, 20(1) :67- 104. 被引量:1

引证文献4

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部