期刊文献+

Vander Waals流体的大时间行为 被引量:2

Large-time behavior in Van der Waals fluids
下载PDF
导出
摘要 相关液气相变的研究 ,主要研究一维混合型偏微分方程组初值问题的解关于时间的渐近性质。 This paper is concerned with liquid vapor phase transitions. The asymptotic behaviors in time of solutions to the initial value problem for a one dimensional system of mixed type in a dynamic phase transition were studied. It is shown that the average density of the initial state determines the large time behavior of the system.
作者 杨翠 施小丁
出处 《北京化工大学学报(自然科学版)》 CAS CSCD 2004年第3期87-89,共3页 Journal of Beijing University of Chemical Technology(Natural Science Edition)
关键词 液气相变 大时间行为 VAN der Waals流体 CAUCHY问题 一维混合型偏微分方程组 初值 平均密度 phase transition large time behavior Van der Waals fluid Cauchy problem
  • 相关文献

参考文献14

  • 1Hattori H. The Riemann problem and the existence of weak solutions to a system of mixed-type in dynamic phase transition[J]. J Diff Equs, 1998, 146: 287- 319 被引量:1
  • 2Huang F, Matsumura A, Shi X. A gas-solid free boundary promblem for a compressible viscous gas[J]. SIAM J Math Anal, 2003, 34 (6): 1330-1354 被引量:1
  • 3Huang F, Matsumura A, Shi X. Viscous shock wave and boundary layer solution to an inflow problem for compressible viscous gas [J ]. Commun Math Phys, 2003,239: 261 - 285 被引量:1
  • 4Kawashima S, Nishida T. Global solution to the initial problem for the equations of one-dimensional motion of viscous polytropic gases[J]. J Math Kyoto Univ, 1981,21: 825 - 827 被引量:1
  • 5Matsumura A, Nishihara K. On the stability of traveling wave solutions of a one-dimensional model system for compressible viscous gas[J]. Japan J Appl Math, 1985,2:17-25 被引量:1
  • 6Matsumura A, Nishihara K. Asymptotics toward the rarefaction waves of the solutions of a one-dimensional model system for compressible viscous gas [ J ]. Japan J Appl Math, 1986,3:1-13 被引量:1
  • 7Xiao-ding ShiDepartment of Mathematics and Computer Science, School of Science, Beijing University of Chemical Technology, Beijing 100029, China.On the Stability of Rarefaction Wave Solutions for Viscous p-system with Boundary Effect[J].Acta Mathematicae Applicatae Sinica,2003,19(2):341-352. 被引量:6
  • 8Fan T. A vanishing viscosity approach on the dynamics of phase transitions in Van der Waals fluids[J ]. J Diff Equs, 1993, 103:179-204 被引量:1
  • 9Hsiao L. Uniqueness of admissible solutions of Riemann problem of systems of conservation laws of mixed type [J]. J Diff Equas, 1990, 86:197-233 被引量:1
  • 10Zumbrun K. Dynamical stability of phase transitions in the p-system with viscosity-capillari-ty [J ]. SIAM J Math, 2000, 60: 1913-1924 被引量:1

二级参考文献16

  • 1Huang, F.M., Matsumura, A., Shi, X.D. Viscous shock wave and boundary layer solution to an infolw problem for compressible viscous gas. Commun. Math. Phys., to appear. 被引量:1
  • 2Kawashima, S., Nikkuni, Y. Stability of stationary solutions to the half-space problem for the discrete Boltzmann equation with multiple collision. Kyushu J. Math., 54(2): 233-255 (2000). 被引量:1
  • 3Kawashima, S., Nishibata, S. Stability of stationary waves for compressible Navier-Stokes equations in the half space. Preprint. 被引量:1
  • 4Liu, T.P. Nonlinear stability of shock wave for viscous conservation laws. Mem. Amer. Math. Soc., 56,1985. 被引量:1
  • 5Liu, T.P., Matsumura, A., Nishihara, K. Behaviors of solutions for the Burgers equation with boundary corresponding to rarefaction waves. SIAM J. Math. Anal. 29:293-308 (1998). 被引量:1
  • 6Matsumura, A. Inflow and outflow problems in the half space for a one-dimensional isentropic model system of compressible viscous gas. Proceedings of IMS Conference on Differential Equations from Mechnics, Hong Kong, 1999, to appear. 被引量:1
  • 7Matsumura, A., Mei, M. Convergence to travelling fronts of solutions of the p-system with viscosity in the presence of a boundary. Arch. Rat. Mech. Anal., 146:1-22 (1999). 被引量:1
  • 8Matsumura, A, Nishihara, K. On the stability of traveling wave solutions of a one-dimensional model system for compressible viscous gas. Japan J. Appl. Math., 2:17-25 (1985). 被引量:1
  • 9Matsumura, A., Nishihara, K. Asymptotics toward the rarefaction wave of the solutions of a one-dimensional model system for compressible viscous gas. dapan d. Appl. Math., 3:1-13 (1986). 被引量:1
  • 10Matsumura, A., Nishihara, K. Global stability of the rarefaction wave of a one-dimensional model system for compressible viscous gas. Commun. Math. Phys., 144:325-335 (1992). 被引量:1

共引文献5

同被引文献7

  • 1Mei M, Wong Y S, Liu L P. Phase transitions in a couped viscoelastic system with periodic initial-boundary condition( Ⅰ )[ J]. Discrete and Continuous Dynamical Systems-Series B, 2007, 7 : 825 - 837. 被引量:1
  • 2Mei M, Wong Y S, Liu L P. Phase transitions in a couped viscoelastic system with periodic initial-boundary condition( Ⅱ)[J]. Discrete and Continuous Dynamical Systems-Series B, 2007, 7:839 - 857. 被引量:1
  • 3Chen X, Wang X P. Phase transition near a liquid-gas coexistence equilibrium [ J]. Arch Rational Mech Anal, 1984,86:317 -351. 被引量:1
  • 4Mei M, Wong Y S, Liu L P. Phase transitions in a cou- ped viscoelastic system with periodic initial-boundary con- dition ( I ): existence and uniform boundedness [ J ]. Discrete and Continuous Dynamical Systems Series B, 2007, 7(4): 825-837. 被引量:1
  • 5Mei M, Wong Y S, Liu L P. Phase transitions in a cou- ped viscoelastic system with periodic initial-boundary con- dition( Ⅱ ) : convergence [ J ]. Discrete and Continuous Dynamical Systems Series B, 2007, 7 (4) : 839-857. 被引量:1
  • 6Mei M, Wong Y S, Liu L P. Stationary solutions of phase transitions in a coupled viscoelastic system [ M ] //Roux I N. Nonlinear Analysis Research Trends, New York: No- va Science Publishers Inc, 2009: 277-293. 被引量:1
  • 7陈亚洲,周培培,施小丁.一维黏性可压缩流体冲击波解的渐近稳定性[J].北京化工大学学报(自然科学版),2007,34(5):557-560. 被引量:4

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部