Bauxite residues,a large volume solid waste,are in urgent need of effective disposal and management.Especially,strategies to alleviate the high alkalinity of bauxite residue remain a big challenge.Here,we developed a ...Bauxite residues,a large volume solid waste,are in urgent need of effective disposal and management.Especially,strategies to alleviate the high alkalinity of bauxite residue remain a big challenge.Here,we developed a synergistic pyrolysis to neutralize the alkalinity of bauxite residue and upgrade the structure of biomass simultaneously.By cooperating the catalytic feature from bauxite residue,rice straw,a cellulose-enriched biomass,could prefer to produce acidic components under a hypothermal pyrolysis temperature(below 250℃)and partial oxygen-contained atmosphere as evidenced by the synchronous TGA-FTIR analysis.In return,these in-situ produced acidic components neutralized the bauxite residue profoundly(pH decreased from 11.5 to 7.2)to obtain a neutral product with long-term water leaching stability.Also,a higher pyrolysis temperature led to neutral biochar-based products with well-defined carbonization characteristics.Thus,the biomass-driven pyrolysis strategy provides a potential to dispose the alkalinity issue of bauxite residue and further opportunities for the sustainable reuse and continuing management of bauxite residue.展开更多
For Li^+ and Na^+ ions scattered from high work function metal surfaces, efficient neutralization is observed, and it cannot be explained by the conventional free electron model. In order to explain these experiment...For Li^+ and Na^+ ions scattered from high work function metal surfaces, efficient neutralization is observed, and it cannot be explained by the conventional free electron model. In order to explain these experimental data, we investigate the velocity-dependent neutral fraction with the modified Brako–Newns(BN) model. The calculated results are in agreement with the experimental data. We find that the parallel velocity effect plays an important role in neutralizing the Li^+ and Na^+ ions for large angle scattering. The nonmonotonic velocity behavior of neutral fraction is strongly related to the distance-dependent coupling strength between the atomic level and metal states.展开更多
基金supported by the National Key Research and Development Program of China(No.2019YFC1803604)the National Natural Science Foundation of China(Nos.41877511+1 种基金21707135)the Fundamental Research Funds for the Central Universities of Central South University。
文摘Bauxite residues,a large volume solid waste,are in urgent need of effective disposal and management.Especially,strategies to alleviate the high alkalinity of bauxite residue remain a big challenge.Here,we developed a synergistic pyrolysis to neutralize the alkalinity of bauxite residue and upgrade the structure of biomass simultaneously.By cooperating the catalytic feature from bauxite residue,rice straw,a cellulose-enriched biomass,could prefer to produce acidic components under a hypothermal pyrolysis temperature(below 250℃)and partial oxygen-contained atmosphere as evidenced by the synchronous TGA-FTIR analysis.In return,these in-situ produced acidic components neutralized the bauxite residue profoundly(pH decreased from 11.5 to 7.2)to obtain a neutral product with long-term water leaching stability.Also,a higher pyrolysis temperature led to neutral biochar-based products with well-defined carbonization characteristics.Thus,the biomass-driven pyrolysis strategy provides a potential to dispose the alkalinity issue of bauxite residue and further opportunities for the sustainable reuse and continuing management of bauxite residue.
基金supported by the National Natural Science Foundation of China(Grant Nos.11405078 and 11474140)the Fundamental Research Funds for the Central Universities,China(Grant Nos.lzujbky-2014-169 and lzujbky-2015-244)+1 种基金sponsored by the Scientific Research Foundation for the Returned Overseas Chinese Scholarsthe State Education Ministry,and the National Students’ Innovation and Entrepreneurship Training Program(Grant Nos.201410730069 and 201510730078)
文摘For Li^+ and Na^+ ions scattered from high work function metal surfaces, efficient neutralization is observed, and it cannot be explained by the conventional free electron model. In order to explain these experimental data, we investigate the velocity-dependent neutral fraction with the modified Brako–Newns(BN) model. The calculated results are in agreement with the experimental data. We find that the parallel velocity effect plays an important role in neutralizing the Li^+ and Na^+ ions for large angle scattering. The nonmonotonic velocity behavior of neutral fraction is strongly related to the distance-dependent coupling strength between the atomic level and metal states.