In expression recognition, feature representation is critical for successful recognition since it contains distinctive information of expressions. In this paper, a new approach for representing facial expression featu...In expression recognition, feature representation is critical for successful recognition since it contains distinctive information of expressions. In this paper, a new approach for representing facial expression features is proposed with its objective to describe features in an effective and efficient way in order to improve the recognition performance. The method combines the facial action coding system(FACS) and 'uniform' local binary patterns(LBP) to represent facial expression features from coarse to fine. The facial feature regions are extracted by active shape models(ASM) based on FACS to obtain the gray-level texture. Then, LBP is used to represent expression features for enhancing the discriminant. A facial expression recognition system is developed based on this feature extraction method by using K nearest neighborhood(K-NN) classifier to recognize facial expressions. Finally, experiments are carried out to evaluate this feature extraction method. The significance of removing the unrelated facial regions and enhancing the discrimination ability of expression features in the recognition process is indicated by the results, in addition to its convenience.展开更多
为了提高对驾驶员疲劳程度检测的准确性与鲁棒性,提出了一种基于主动形状模型的多个特征融合疲劳检测算法。首先利用简单类Haar特征的级联Adaboost算法快速检测出人脸位置,然后对检测到的人脸进行基于主动形状模型(active shape model,A...为了提高对驾驶员疲劳程度检测的准确性与鲁棒性,提出了一种基于主动形状模型的多个特征融合疲劳检测算法。首先利用简单类Haar特征的级联Adaboost算法快速检测出人脸位置,然后对检测到的人脸进行基于主动形状模型(active shape model,ASM)的特征点定位,利用12个ASM特征标记点,得出眼睛、嘴部和头部的状态参数,再相应地计算出PERCLOS(percentage of eyelid closure over the pupil over time)、AECS(average eye closure speed)、哈欠频率、点头频率等4个疲劳特征,最后利用自适应神经模糊推理系统(adaptive network based fuzzy inference system,ANFIS)判决出驾驶员的3级疲劳程度(清醒、疲劳和严重疲劳)。实验结果表明,本方法对驾驶员疲劳检测准确率达93.3%,具有较高的准确性与鲁棒性。展开更多
基金supported by National Natural Science Foundation of China(No.61273339)
文摘In expression recognition, feature representation is critical for successful recognition since it contains distinctive information of expressions. In this paper, a new approach for representing facial expression features is proposed with its objective to describe features in an effective and efficient way in order to improve the recognition performance. The method combines the facial action coding system(FACS) and 'uniform' local binary patterns(LBP) to represent facial expression features from coarse to fine. The facial feature regions are extracted by active shape models(ASM) based on FACS to obtain the gray-level texture. Then, LBP is used to represent expression features for enhancing the discriminant. A facial expression recognition system is developed based on this feature extraction method by using K nearest neighborhood(K-NN) classifier to recognize facial expressions. Finally, experiments are carried out to evaluate this feature extraction method. The significance of removing the unrelated facial regions and enhancing the discrimination ability of expression features in the recognition process is indicated by the results, in addition to its convenience.
文摘为了提高对驾驶员疲劳程度检测的准确性与鲁棒性,提出了一种基于主动形状模型的多个特征融合疲劳检测算法。首先利用简单类Haar特征的级联Adaboost算法快速检测出人脸位置,然后对检测到的人脸进行基于主动形状模型(active shape model,ASM)的特征点定位,利用12个ASM特征标记点,得出眼睛、嘴部和头部的状态参数,再相应地计算出PERCLOS(percentage of eyelid closure over the pupil over time)、AECS(average eye closure speed)、哈欠频率、点头频率等4个疲劳特征,最后利用自适应神经模糊推理系统(adaptive network based fuzzy inference system,ANFIS)判决出驾驶员的3级疲劳程度(清醒、疲劳和严重疲劳)。实验结果表明,本方法对驾驶员疲劳检测准确率达93.3%,具有较高的准确性与鲁棒性。