期刊文献+

基于深度神经网络的特征加权融合人脸识别方法 被引量:16

Face recognition based on deep neural network and weighted fusion of face features
下载PDF
导出
摘要 针对目前难以提取到适合用于分类的人脸特征以及在非限条件下进行人脸识别准确率低的问题,提出了一种基于深度神经网络的特征加权融合人脸识别方法(DLWF)。首先,应用主动形状模型(ASM)提取出人脸面部的主要特征点,并根据主要特征点对人脸不同器官区域进行采样;然后,将所得采样块分别输入到对应的深度信念网络(DBN)中进行训练,获得网络最优参数;最后,利用Softmax回归求出各个区域的相似度向量,将多区域的相似度向量加权融合得到综合相似度评分进行人脸识别。经ORL和WFL人脸库上进行实验验证,DLWF算法的识别准确率分别达到97%和88.76%,与传统算法主成分分析(PCA)、支持向量机(SVM)、DBN及FIP+线性判别式分析(LDA)相比,无论是限制条件还是非限制条件下,识别率均有提高。实验结果表明,该算法具有高效的人脸识别能力。 It is difficult to extract suitable face feature for classification, and the face recognition accuracy is low under unconstrained condition. To solve the above problems, a new method based on deep neural network and weighted fusion of face features, namely DLWF, was proposed. First, facial feature points were located by using Active Shape Model( ASM), then different organs of face were sampled according to those facial feature points. The corresponding Deep Belief Network( DBN)was trained by the regional samples to get optimal network parameters. Finally, the similarity vector of different organs was obtained by using Softmax regression. The weighted fusion of multiple regions in the similarity vector method was used for face recognition. The recognition accuracy got to 97% and 88. 76% respectively on the ORL and LFW face database; compared with the traditional recognition algorithm including Principal Components Analysis( PCA), Support Vector Machine( SVM),DBN, and Face Identity-Preserving( FIP) + Linear Discriminant Analysis( LDA), no matter under the constrained condition or the unconstrained condition, recognition rates were both improved. The experimental results show that the proposed algorithm has high efficiency in face recognition.
出处 《计算机应用》 CSCD 北大核心 2016年第2期437-443,共7页 journal of Computer Applications
基金 国家科技支撑计划项目(2013BAH12F02)~~
关键词 人脸识别 非限制条件 深度信念网络 加权融合 主动形状模型 face recognition unconstrained condition Deep Belief Network(DBN) weighted fusion Active Shape Model(ASM)
  • 相关文献

参考文献18

  • 1TURK M, ALEX P. Eigenfaces for recognition[J]. Journal of Cognitive Neuroscience, 1991, 3(2): 71-86. 被引量:1
  • 2SUN Y, WANG X, TANG X. Deep learning face representation from predicting 10000 classes[C]//CVPR '14: Proceedings of the 2014 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Washington, DC: IEEE Computer Society, 2014: 1891-1898. 被引量:1
  • 3HU J, LU J, TAN Y-P. Discriminative deep metric learning for face verification in the wild[C]//CVPR '14: Proceedings of the 2014 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Washington, DC: IEEE Computer Society, 2014: 1875-1882. 被引量:1
  • 4HUANG G, LEE H, LEARNED-MILLER E. Learning hierarchical representations for face verification with convolutional deep belief networks[C]//CVPR '12: Proceedings of the 2012 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Washington, DC: IEEE Computer Society, 2012: 2518-2525. 被引量:1
  • 5ZHU Z, LUO P, WANG X, et al. Deep learning identity-preserving face space[C]//ICCV 2013: Proceedings of the 2013 IEEE International Conference on Computer Vision. Washington, DC: IEEE Computer Society, 2013: 113-120. 被引量:1
  • 6张雯,王文伟.基于局部二值模式和深度学习的人脸识别[J].计算机应用,2015,35(5):1474-1478. 被引量:34
  • 7SUN Y, WANG X, TANG X. Hybrid deep learning for face verification[C]//ICCV 2013: Proceedings of the 2013 IEEE International Conference on Computer Vision. Washington, DC: IEEE Computer Society, 2013: 2013: 1489-1496. 被引量:1
  • 8TAIGMAN Y, YANG M, RANZATO M, et al. DeepFace: closing the gap to human-level performance in face verification[C]//CVPR '14: Proceedings of the 2014 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Washington, DC: IEEE Computer Society, 2014: 1701-1708. 被引量:1
  • 9SUN Y, CHEN Y, WANG X, et al. Deep learning face representation by joint identification-verification[C]//NIPS 2014: Advances in Neural Information Processing Systems 27. Cambridge, MA: MIT Press, 2014: 1988-1996. 被引量:1
  • 10HINTON G E, OSINDERO S, THE Y W. A fast learning algorithm for deep belief nets[J]. Neural Computation, 2006, 18(7): 1527-1554. 被引量:1

二级参考文献13

  • 1SIROVICH L, KIRBY M. Low-dimensional procedure for the char- acterization of human faces[ J]. Journal of the Optical Society of A- merica A, 1987, 4(3) : 519 -524. 被引量:1
  • 2CHELLAPPA R, WILSON C L, SIROHEY S. Human and machine recognition of faces: a survey [ J]. Proceedings of the IEEE, 1995, 83(5) : 705 -740. 被引量:1
  • 3BELHUMERUR P N, HESPANttA J P, KRIEGMAN D. Eigenfaces vs. Fisherfaces: recognition using class specific linear projection [ J]. IEEE Transactions on Pattern Analysis and Machine Intelli- gence, 1997, 19(7}: 711-720. 被引量:1
  • 4TAIGMAN Y, YANG M, RANZATO M A, et al. Deepface: closing the gap to human-level performance in face verification[ C]// Pro-ceedings of the 2014 IEEE Conference on Computer Vision and Pat- tern Recognition. Piscataway: IEEE, 2014: 1701- 1708. 被引量:1
  • 5MAENPAA T, PIET1KAINEN M. Texture analysis with local binary patterns( I]. Handbook of Pattern Recognition and Computer Vi- sion, 2005, 3:197-216. 被引量:1
  • 6OJALA T, PIETIKAINEN M, MAENPAA T. Muhiresolution gray scale and rotation invariant texture classification with local binary patterns[ J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(7): 971-987. 被引量:1
  • 7AHONEN T, HADID A, PIETIKAINEN M. Face recognition with local binary patterns[M]. Heidelberg: Springer, 2004: 469- RR1. 被引量:1
  • 8BENGIO Y, LAMBLIN P, POPOVICI D, et al. Greedy layer-wise training of deep networks[ C]// Proceedings of the 20th Annual Conference on Neural Information Processing Systems. [ S. 1. ] : DBLP, 2007, 19: 153. 被引量:1
  • 9HINTON G, OSINDERO S, TEH Y W. A fast learning algorithm for deep belief nets[ J]. Neural Computation, 2006, 18(7) : 1527 - 1554. 被引量:1
  • 10彭中亚,程国建.基于独立成分分析和核向量机的人脸识别[J].计算机工程,2010,36(7):193-194. 被引量:21

共引文献33

同被引文献95

引证文献16

二级引证文献73

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部