Objective: To study the effect of Xinjining extract (心悸宁, XJN) on inward rectifier potassium current (IKI) in ventricular myocyte (VMC) of guinea pigs and its anti-arrhythmic mechanism on ion channel level. ...Objective: To study the effect of Xinjining extract (心悸宁, XJN) on inward rectifier potassium current (IKI) in ventricular myocyte (VMC) of guinea pigs and its anti-arrhythmic mechanism on ion channel level. Methods: Single VMC was enzymatically isolated by zymolisis, and whole-cell patch clamp recording technique was used to record the Ikl in VMC irrigated with XJN of different concentrations (1.25, 2.50, 5.00 g/L; six samples for each). The stable current and conductance of the inward component of IK1 as well as the outward component of peak IK1 and conductance of it accordingly was recorded when the test voltage was set on -110 mV. Results: The suppressive rate of XJN on the inward component of IK1 was 9.54% ± 5.81%, 34.82% ± 15.03%, and 59.52% ± 25.58% with a concentration of 1.25, 2.50, and 5.00 g/L, respectively, and that for the outward component of peak IK1 was 23.94%± 7.45%, 52.98%± 19.62%, and 71.42% ± 23.01%, respectively (all P〈0.05). Moreover, different concentrations of XJN also showed effects for reducing IK1 conductance. Conclusion: XJN has inhibitory effect on IK1in guinea pig's VMC, and that of the same concentration shows stronger inhibition on outward component than on inward component, which may be one of the mechanisms of its anti-arrhythmic effect.展开更多
基金Supported by the Fundfor Innovation of Phenomof Henan Province(No.0521002400)
文摘Objective: To study the effect of Xinjining extract (心悸宁, XJN) on inward rectifier potassium current (IKI) in ventricular myocyte (VMC) of guinea pigs and its anti-arrhythmic mechanism on ion channel level. Methods: Single VMC was enzymatically isolated by zymolisis, and whole-cell patch clamp recording technique was used to record the Ikl in VMC irrigated with XJN of different concentrations (1.25, 2.50, 5.00 g/L; six samples for each). The stable current and conductance of the inward component of IK1 as well as the outward component of peak IK1 and conductance of it accordingly was recorded when the test voltage was set on -110 mV. Results: The suppressive rate of XJN on the inward component of IK1 was 9.54% ± 5.81%, 34.82% ± 15.03%, and 59.52% ± 25.58% with a concentration of 1.25, 2.50, and 5.00 g/L, respectively, and that for the outward component of peak IK1 was 23.94%± 7.45%, 52.98%± 19.62%, and 71.42% ± 23.01%, respectively (all P〈0.05). Moreover, different concentrations of XJN also showed effects for reducing IK1 conductance. Conclusion: XJN has inhibitory effect on IK1in guinea pig's VMC, and that of the same concentration shows stronger inhibition on outward component than on inward component, which may be one of the mechanisms of its anti-arrhythmic effect.