By means of a characterization of compact spaces in terms of open CD*-filters induced by a , a - and open CD*-filters process of compactifications of an arbitrary topological space Y is obtained in Sec. 3 by embedding...By means of a characterization of compact spaces in terms of open CD*-filters induced by a , a - and open CD*-filters process of compactifications of an arbitrary topological space Y is obtained in Sec. 3 by embedding Y as a dense subspace of , YS = {ε |ε is an open CD*-filter that does not converge in Y}, YT = {A|A is a basic open CD*-filter that does not converge in Y}, is the topology induced by the base B = {U*|U is open in Y, U ≠φ} and U* = {F∈Ysw (or YTw)|U∈F}. Furthermore, an arbitrary Hausdorff compactification (Z, h) of a Tychonoff space X?can be obtained from a by the?similar process in Sec.3.展开更多
In this paper we shall investigate a uniqueness result for solutions of the G-heat equation. We obtain the Tychonoff uniqueness theorem for the G-heat equation.
We introduced the fuzzy axioms of choice,fuzzy Zorn’s lemma and fuzzy well-ordering principle,which are the fuzzy versions of the axioms of choice,Zorn’s lemma and well-ordering principle,and discussed the relations...We introduced the fuzzy axioms of choice,fuzzy Zorn’s lemma and fuzzy well-ordering principle,which are the fuzzy versions of the axioms of choice,Zorn’s lemma and well-ordering principle,and discussed the relations among them.As an application of fuzzy Zorn’s lemma,we got the following results:(1)Every proper fuzzy ideal of a ring was contained in a maximal fuzzy ideal.(2)Every nonzero ring contained a fuzzy maximal ideal.(3)Introduced the notion of fuzzy nilpotent elements in a ring R,and proved that the intersection of all fuzzy prime ideals in a commutative ring R is the union of all fuzzy nilpotent elements in R.(4)Proposed the fuzzy version of Tychonoff Theorem and by use of fuzzy Zorn’s lemma,we proved the fuzzy Tychonoff Theorem.展开更多
文摘By means of a characterization of compact spaces in terms of open CD*-filters induced by a , a - and open CD*-filters process of compactifications of an arbitrary topological space Y is obtained in Sec. 3 by embedding Y as a dense subspace of , YS = {ε |ε is an open CD*-filter that does not converge in Y}, YT = {A|A is a basic open CD*-filter that does not converge in Y}, is the topology induced by the base B = {U*|U is open in Y, U ≠φ} and U* = {F∈Ysw (or YTw)|U∈F}. Furthermore, an arbitrary Hausdorff compactification (Z, h) of a Tychonoff space X?can be obtained from a by the?similar process in Sec.3.
基金supported by the Young Scholar Award for Doctoral Students of the Ministry of Education of China, the Marie Curie Initial Training Network (Grant No. PITN-GA-2008-213841)National Basic Research Program of China(Grant No. 2007CB814900)National Natural Science Foundation of China (Grant No. 11071144)
文摘In this paper we shall investigate a uniqueness result for solutions of the G-heat equation. We obtain the Tychonoff uniqueness theorem for the G-heat equation.
基金Supported by the National Natural Science Foundation of China(11971384)by the grant of Natural Science Basic Research Program of Shaanxi(Program No.2021JM-137)the Fundamental Research Funds for the Central Universities under grant QTZX2106,China 111 Project(B16037)and OPPO Research Fund.
文摘We introduced the fuzzy axioms of choice,fuzzy Zorn’s lemma and fuzzy well-ordering principle,which are the fuzzy versions of the axioms of choice,Zorn’s lemma and well-ordering principle,and discussed the relations among them.As an application of fuzzy Zorn’s lemma,we got the following results:(1)Every proper fuzzy ideal of a ring was contained in a maximal fuzzy ideal.(2)Every nonzero ring contained a fuzzy maximal ideal.(3)Introduced the notion of fuzzy nilpotent elements in a ring R,and proved that the intersection of all fuzzy prime ideals in a commutative ring R is the union of all fuzzy nilpotent elements in R.(4)Proposed the fuzzy version of Tychonoff Theorem and by use of fuzzy Zorn’s lemma,we proved the fuzzy Tychonoff Theorem.