期刊文献+

一类三阶拟线性微分方程非振动解的存在性 被引量:5

The existence of nonoscillatory solution of a third order quasilinear differential equation
下载PDF
导出
摘要 讨论三阶拟线性微分方程(p(t)∣u″∣α-1u″)′+q(t)∣u∣β-1u=0非振动解的存在性.其中α>0,β>0,p(t)和q(t)是定义在区间[a,∞)上的连续函数,且满足当t≥a时p(t)>0,q(t)>0.给出了当t→∞时此方程满足∫∞(p(t1))1/αdt=∞的特殊非振动解存在的充分必要条件. This paper is concerned with nonoscillatory solutions of the third order quasilinear differential equation (p(t)|u″|^a-1u″)′+q(t)+q(t|u|^β-1u=0Where α〉0,β〉0,p(t)t q(t) and q(t) are continuous functions on an infinite interval [a,∞) satisfying p(t)〉0 and q (t)〉 0 for t ≥ α. A couple of necessary and sufficient conditions that equation has specific nonoscillatory solutions are given, when t→∞ the equation satisfies∫a^∞1/(p(t))1/adt=∞.
作者 汪金燕
出处 《西北师范大学学报(自然科学版)》 CAS 2008年第4期6-9,共4页 Journal of Northwest Normal University(Natural Science)
基金 北方民族大学校内基金资助(2006Y034)
关键词 非振动解 渐近性 Schauder—Tychonoff不动点定理 nonoscillatory solution asymptotic behavior Schauder-Tychonoff fixed point theorem
  • 相关文献

参考文献4

  • 1ELBERT A. Oscillation and nonoscillation theorems for some nonlinear ordinary differential equations [ M ] //Ordinary and Partial Differential Equations (Lecture Notes in Math, No 1964). Berlin, Heidelberg, New York: Springer Verlag, 1982:187 212. 被引量:1
  • 2WU Fen- tao. Nonoscillatory solutions of fourth order quasilinear differential equations[J]. Funkcial Ekvac, 2002, 4S: 71-88. 被引量:1
  • 3MIRZOV D D. Ability of the solutions of a system of nonlinear differential equations to oscillate[J]. Math Notes, 1974, 16:932-935. 被引量:1
  • 4TANIGAWA. Asymptotic Analysis of Positive Solution to Second Order Quasilinear Ordinary Differential Equations on Infinite Intervals [D]. Fukuoka, Japan: Fukuoka Univ, 1999. 被引量:1

同被引文献13

  • 1[1]Atkinson F V.On second-order nan-linear oscillations[J].Amer J Math,1954:643-647. 被引量:1
  • 2[2]Kusano T,Naito Y.Oscillation and nonoseillaton criteria for second order quaailinear differential equations[J].Acta Math,1997,76(1/2):81-89. 被引量:1
  • 3[3]Tanigawa.Asymptic analysis of positive solution to second order quasilinear ordinary differential equations on infinite intervals[D].Fukuoka:Fukuoka University,1999. 被引量:1
  • 4[4]Fentao Wu.Oscillation theory for fourth-order quasilinear differential equations and Four-dimensional differential systems[D].Ehime:Ehime University,2001. 被引量:1
  • 5KUSANO T, NAITO M. Nonlinear oscillation of fourth order differential equations[J]. Can J Math, 1976,28 : 840-852. 被引量:1
  • 6NAITO M. Existence and asymptotic behavior of positive solu- tion of higher-order quasilinear ordinary differential equations[J]. Math Naehr, 2006,279 : 198-216. 被引量:1
  • 7WU F T. Nonoseillatory solutions of fourth order quasilinear differential equation[J].Funkeial Ekvae, 2002,45: 71-88. 被引量:1
  • 8T Kusano,M Naito. Nonlinear Oscillation of Fourth Order Differential Equations[J].Canadian Journal of Mathematics,1976.840-852. 被引量:1
  • 9Fentao Wu. Nonoscillatory Solutions of Fourth Order Quasilinear Differential Equations[J].Funkcialaj Ekvacioj,2002.71-88. 被引量:1
  • 10汪金燕.一类三阶非线性微分方程最终正解的存在性[J].重庆工学院学报(自然科学版),2008,22(6):144-147. 被引量:4

引证文献5

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部