摘要
讨论三阶拟线性微分方程(p(t)∣u″∣α-1u″)′+q(t)∣u∣β-1u=0非振动解的存在性.其中α>0,β>0,p(t)和q(t)是定义在区间[a,∞)上的连续函数,且满足当t≥a时p(t)>0,q(t)>0.给出了当t→∞时此方程满足∫∞(p(t1))1/αdt=∞的特殊非振动解存在的充分必要条件.
This paper is concerned with nonoscillatory solutions of the third order quasilinear differential equation (p(t)|u″|^a-1u″)′+q(t)+q(t|u|^β-1u=0Where α〉0,β〉0,p(t)t q(t) and q(t) are continuous functions on an infinite interval [a,∞) satisfying p(t)〉0 and q (t)〉 0 for t ≥ α. A couple of necessary and sufficient conditions that equation has specific nonoscillatory solutions are given, when t→∞ the equation satisfies∫a^∞1/(p(t))1/adt=∞.
出处
《西北师范大学学报(自然科学版)》
CAS
2008年第4期6-9,共4页
Journal of Northwest Normal University(Natural Science)
基金
北方民族大学校内基金资助(2006Y034)