Few function about 3D tool radius compensation is applied to generating executable motion control commands in the existing computer numerical control (CNC) systems. Once the tool radius is changed, especially in the c...Few function about 3D tool radius compensation is applied to generating executable motion control commands in the existing computer numerical control (CNC) systems. Once the tool radius is changed, especially in the case of tool size changing with tool wear in machining, a new NC program has to be recreated. A generic 3D tool radius compensation method for multi-axis peripheral milling in CNC systems is presented. The offset path is calculated by offsetting the tool path along the direction of the offset vector with a given distance. The offset vector is perpendicular to both the tangent vector of the tool path and the orientation vector of the tool axis relative to the workpiece. The orientation vector equations of the tool axis relative to the workpiece are obtained through homogeneous coordinate transformation matrix and forward kinematics of generalized kinematics model of multi-axis machine tools. To avoid cutting into the corner formed by the two adjacent tool paths, the coordinates of offset path at the intersection point have been calculated according to the transition type that is determined by the angle between the two tool path tangent vectors at the corner. Through the verification by the solid cutting simulation software VERICUTwith different tool radiuses on a table-tilting type five-axis machine tool, and by the real machining experiment of machining a soup spoon on a five-axis machine tool with the developed CNC system, the effectiveness of the proposed 3D tool radius compensation method is confirmed. The proposed compensation method can be suitable for all kinds of threeto five-axis machine tools as a general form.展开更多
In this paper, eddy current sensors and thermocouple sensors were employed to measure the thermal field and thermal deformation of a spindle of a telescopic CNC boring-milling machine tool, respectively. A linear regr...In this paper, eddy current sensors and thermocouple sensors were employed to measure the thermal field and thermal deformation of a spindle of a telescopic CNC boring-milling machine tool, respectively. A linear regression method was proposed to establish the thermal error model. Furthermore, two compensation methods were implemented based on the SIEMENS 840D system by using the feed shaft of z direction and telescopic spindle respectively. Experimental results showed that the thermal error could be reduced by 73.79% when using the second compensation method, and the thermal error could be eliminated by using the two compensation methods effectively.展开更多
基金supported by National Major S&T Program of China(Grant No. 2010zx04008-041)National Hi-tech Research and Development Program of China (863 Program, Grant No.2011AA04A104)
文摘Few function about 3D tool radius compensation is applied to generating executable motion control commands in the existing computer numerical control (CNC) systems. Once the tool radius is changed, especially in the case of tool size changing with tool wear in machining, a new NC program has to be recreated. A generic 3D tool radius compensation method for multi-axis peripheral milling in CNC systems is presented. The offset path is calculated by offsetting the tool path along the direction of the offset vector with a given distance. The offset vector is perpendicular to both the tangent vector of the tool path and the orientation vector of the tool axis relative to the workpiece. The orientation vector equations of the tool axis relative to the workpiece are obtained through homogeneous coordinate transformation matrix and forward kinematics of generalized kinematics model of multi-axis machine tools. To avoid cutting into the corner formed by the two adjacent tool paths, the coordinates of offset path at the intersection point have been calculated according to the transition type that is determined by the angle between the two tool path tangent vectors at the corner. Through the verification by the solid cutting simulation software VERICUTwith different tool radiuses on a table-tilting type five-axis machine tool, and by the real machining experiment of machining a soup spoon on a five-axis machine tool with the developed CNC system, the effectiveness of the proposed 3D tool radius compensation method is confirmed. The proposed compensation method can be suitable for all kinds of threeto five-axis machine tools as a general form.
文摘In this paper, eddy current sensors and thermocouple sensors were employed to measure the thermal field and thermal deformation of a spindle of a telescopic CNC boring-milling machine tool, respectively. A linear regression method was proposed to establish the thermal error model. Furthermore, two compensation methods were implemented based on the SIEMENS 840D system by using the feed shaft of z direction and telescopic spindle respectively. Experimental results showed that the thermal error could be reduced by 73.79% when using the second compensation method, and the thermal error could be eliminated by using the two compensation methods effectively.