Web 2.0时代,消费者在在线购物、学习和娱乐时越来越多地依赖在线评论信息,而虚假的评论会误导消费者的决策,影响商家的真实信用,因此有效识别虚假评论具有重要意义。文中首先对虚假评论的范围进行了界定,并从虚假评论识别、形成动机、...Web 2.0时代,消费者在在线购物、学习和娱乐时越来越多地依赖在线评论信息,而虚假的评论会误导消费者的决策,影响商家的真实信用,因此有效识别虚假评论具有重要意义。文中首先对虚假评论的范围进行了界定,并从虚假评论识别、形成动机、对消费者的影响以及治理策略4个方面归纳了虚假评论的研究内容,给出了虚假评论研究框架和一般识别方法的工作流程。然后从评论文本内容和评论者及其群组行为两个角度,对近十年来国内外的相关研究成果进行了综述,介绍了虚假评论效果评估的相关数据集和评价指标,统计分析了在公开数据集上实现的虚假评论有效识别方法,并从特征选取、模型方法、训练数据集、评价指标值等方面进行了对比分析。最后对虚假评论识别领域的有标注语料规模限制等未来研究方向进行了探讨。展开更多
学术文本中的论断句包含了学者对研究问题的看法和判断,对其进行识别有助于组织和挖掘其中蕴含的学术观点,以辅助学者更高效地开展科研活动。在对前人研究进行归纳的基础上,提出论断句判断的3个充分条件和3个必要条件,从肯定和否定角度...学术文本中的论断句包含了学者对研究问题的看法和判断,对其进行识别有助于组织和挖掘其中蕴含的学术观点,以辅助学者更高效地开展科研活动。在对前人研究进行归纳的基础上,提出论断句判断的3个充分条件和3个必要条件,从肯定和否定角度构建论断句判定标准。开发论断句标注系统,选择信息资源管理领域部分论文,开展摘要和全文层面论断句的标注实验。评测最小序列优化、支持向量机、朴素贝叶斯、决策树、k近邻、BERT(bidirectional encoder representations from transformers)+FC(full connection)、BERT+BiLSTM(bidirectional long short-term memory)分类器对论断句的识别效果。研究发现:①使用本文提出的判断标准,标注者在摘要和全文层面对学术文本中论断句和非论断句的标注一致性较高;②仅使用文本特征情况下,BERT+BiLSTM算法识别效果最好,准确率、召回率和F_1值等指标均大于90%;③论断句和非论断句在长度、段内位置、文内位置和TextRank权重上频率分布均存在差异;④在摘要层面,使用序列最小优化算法,加入长度特征后,分类器识别效果提升0.5%;在全文层面,使用支持向量机分类器,加入长度、段内相对位置、文内相对位置特征后,分类器识别效果在F_1值上取得了2%的提升。展开更多
文摘学术文本中的论断句包含了学者对研究问题的看法和判断,对其进行识别有助于组织和挖掘其中蕴含的学术观点,以辅助学者更高效地开展科研活动。在对前人研究进行归纳的基础上,提出论断句判断的3个充分条件和3个必要条件,从肯定和否定角度构建论断句判定标准。开发论断句标注系统,选择信息资源管理领域部分论文,开展摘要和全文层面论断句的标注实验。评测最小序列优化、支持向量机、朴素贝叶斯、决策树、k近邻、BERT(bidirectional encoder representations from transformers)+FC(full connection)、BERT+BiLSTM(bidirectional long short-term memory)分类器对论断句的识别效果。研究发现:①使用本文提出的判断标准,标注者在摘要和全文层面对学术文本中论断句和非论断句的标注一致性较高;②仅使用文本特征情况下,BERT+BiLSTM算法识别效果最好,准确率、召回率和F_1值等指标均大于90%;③论断句和非论断句在长度、段内位置、文内位置和TextRank权重上频率分布均存在差异;④在摘要层面,使用序列最小优化算法,加入长度特征后,分类器识别效果提升0.5%;在全文层面,使用支持向量机分类器,加入长度、段内相对位置、文内相对位置特征后,分类器识别效果在F_1值上取得了2%的提升。