期刊文献+

虚假评论识别研究综述 被引量:11

Survey on Fake Review Recognition
下载PDF
导出
摘要 Web 2.0时代,消费者在在线购物、学习和娱乐时越来越多地依赖在线评论信息,而虚假的评论会误导消费者的决策,影响商家的真实信用,因此有效识别虚假评论具有重要意义。文中首先对虚假评论的范围进行了界定,并从虚假评论识别、形成动机、对消费者的影响以及治理策略4个方面归纳了虚假评论的研究内容,给出了虚假评论研究框架和一般识别方法的工作流程。然后从评论文本内容和评论者及其群组行为两个角度,对近十年来国内外的相关研究成果进行了综述,介绍了虚假评论效果评估的相关数据集和评价指标,统计分析了在公开数据集上实现的虚假评论有效识别方法,并从特征选取、模型方法、训练数据集、评价指标值等方面进行了对比分析。最后对虚假评论识别领域的有标注语料规模限制等未来研究方向进行了探讨。 In Web 2.0 era,consumers mostly rely on online reviews from former consumers when they are shopping,learning and entertaining on the Internet.Fake review can mislead users on making consumption decisions and affect the real credit of stores.Therefore,recognizing fake reviews effectively is necessary and meaningful.This paper first starts from the definition of fake review,introduces the research content of false review from four directions,which are fake review recognition,motivation,influence on consumers and how to prevent false review,and then puts forward the research framework of fake reviews and the workflow of general recognition methods.Then it sums up current perspectives of relevant research from the text of fake reviews and fake reviewers,introduces common datasets and evaluation indicators,statistically analyzes the effective recognition method of fake review on open datasets.Specifically,it makes a conclusion about the feature selection,fake review recognition models,training datasets and evaluation indicators of current research works,and makes a comparison among different detection models.Finally,the future research directions of fake review recognition,such as the limit of large scale labeled datasets are discussed.
作者 袁禄 朱郑州 任庭玉 YUAN Lu;ZHU Zheng-zhou;REN Ting-yu(School of Software&Microelectronics,Peking University,Beijing 102600,China)
出处 《计算机科学》 CSCD 北大核心 2021年第1期111-118,共8页 Computer Science
基金 国家重点研发计划项目(2017YFB1402400)。
关键词 虚假评论 虚假评论识别 虚假评论者 文本特征 行为特征 Fake review Fake review recognition Fake reviewer Textual feature Behavior feature
  • 相关文献

参考文献20

二级参考文献235

  • 1金博,史彦军,滕弘飞.基于语义理解的文本相似度算法[J].大连理工大学学报,2005,45(2):291-297. 被引量:80
  • 2朱嫣岚,闵锦,周雅倩,黄萱菁,吴立德.基于HowNet的词汇语义倾向计算[J].中文信息学报,2006,20(1):14-20. 被引量:327
  • 3Kumar N, Benbasat I. The influence of recommendations and consumer reviews on evaluations of websites [ J ]. Information Systems Research, 2006, 17 (4) : 425 - 439. 被引量:1
  • 4Dellarocas C. The digitization of word of mouth : Promise and challenges of online feedback mechanisms [ J ]. Management Science, 2003, 49(10) : 1407 - 1424. 被引量:1
  • 5Park D H, Lee J, Han I. The effect of on-line consumer reviews on consumer purchasing intention : The moderating role of involvement[ J]. International Journal of Electronic Commerce, 2007, 11 (4) : 125 - 148. 被引量:1
  • 6Zhang Z. Weighing stars : Aggregating online product reviews for intelligent e-commerce applications [ J ]. IEEE Intelligent Systems, 2008, 23 (5) - 42 - 49. 被引量:1
  • 7Hu N, Pavlou P A, Zhang J. Can online reviews reveal a product' s true quality? Empirical findings and analytical modeling of online word-of-mouth communication[ C ]/! Proceedings of the 7th ACM Conference on Electronic Commerce, Ann Arbor, Michigan, USA : Association for Computing Machinery, 2006 : 324 - 330. 被引量:1
  • 8Liu Y, Huang X J, An A J, et al. Modeling and predicting the helpfulness of online reviews [ C l// Procedings of the 8th IEEE International Conference on Data Mining, Washington. DC, USA: IEEE Computer Society, 2008:443 -452. 被引量:1
  • 9Ghose A, Ipeiortis P G. Designing novel review ranking systems : Predicting the usefulness and impact of reviews [ C ]/! Pro- ceedings of the 9th ACM Conference on Electronic Commerce, Minneapolis, MN, USA: Association for Computing Machin- ery, 2007:303-310. 被引量:1
  • 10Otterbacher J. "Helpfulness" in online communities: A measure of message quality [ C ]// Proceedings of the 27th Interna-tional Conference on Human Factors in Computing Systems, Boston, MA, USA: Association for Computing Machinery, 2009 : 955 - 964. 被引量:1

共引文献1086

同被引文献67

引证文献11

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部