期刊文献+

基于词向量的中文词汇蕴涵关系识别 被引量:7

Recognition of Chinese Lexical Entailment Relation Based on Word Vector
下载PDF
导出
摘要 英文词汇蕴涵关系识别已有较多研究,并提出许多识别模型,但针对中文的词汇蕴涵关系获取则鲜有研究。为此,提出一种中文词汇蕴涵关系识别方法。利用词向量技术,在中文维基百科语料上进行训练,将词汇表示为词向量,设计各种基于词向量的分类特征,训练得到可用于名词词汇蕴涵关系分类的支持向量机分类模型。实验结果表明,与传统的余弦相似度方法相比,该方法以及设计的各种分类特征在词汇蕴涵关系识别方面具有明显优势。 Automatic recognition of English lexical entailment relation has many researches,and many recognition models are presented. But study on Chines lexical entailment is not sufficient while there have many studies on English lexical entailment from different points of view. This paper proposes a recognition method of Chinese lexical entailment relation based on word vector,it uses word vector technology on Chinese Wikipedia corpora,and word is represented as word vector. Word vector based classification features are designed,and Support Vector Machine( SVM) model for Chinese noun lexical entailment classification is trained on manually created Chinese lexical entailment data set.Experimental results show that the method and designed classification features have good performance on lexical entailment relation recognition compared with traditional cosine similarity method.
出处 《计算机工程》 CAS CSCD 北大核心 2016年第2期169-174,共6页 Computer Engineering
基金 国家自然科学基金资助项目(61163039 61163036 61363058) 西北师范大学青年教师科研能力提升计划基金资助项目(NWNU-LKQN-10-2 NWNU-LKQN-12-23)
关键词 文本蕴涵 词汇蕴涵 词向量 蕴涵特征 支持向量机 textual entailment lexical entailment word vector entailment feature Support Vector Machine(SVM)
  • 相关文献

参考文献16

  • 1Androutsopoulos I,Malakasiotis P.A Survey of Paraphrasing and Textual Entailment Methods[J].Journal of Artificial Intelligence Research,2010,38(1):135-187. 被引量:1
  • 2袁毓林,王明华.文本蕴涵的推理模型与识别模型[J].中文信息学报,2010,24(2):3-13. 被引量:17
  • 3盛雅琦,张晗,吕晨,姬东鸿.基于混合主题模型的文本蕴涵识别[J].计算机工程,2015,41(5):180-184. 被引量:2
  • 4Shnarch E,Dagan I.Lexical Entailment and Its Extraction from Wikipedia[D].Israel,Jaffa:Bar-Ilan University,2008. 被引量:1
  • 5Kouylekov M,Magnini B.Building a Large-scale Repository of Textual Entailment Rules[C]//Pro-ceedings of the5th International Conference on Language Resources and Evaluation.Genoa,Italy:[s.n.],2006:2437-2440. 被引量:1
  • 6Weeds J,Weir D.A General Framework for Distributional Similarity[C]//Proceedings of EMNLP’03.Sapporo,Japan:[s.n.],2003:81-88. 被引量:1
  • 7Weeds J,Weir D,Mc Carthy D.Characterizing Measures of Lexical Distributional Similarity[C]//Proceedings of the20th International Conference on Computational Linguistics).Geneva,Switzerland:[s.n.],2004:1015-1021. 被引量:1
  • 8Lin Dekang.Automatic Retrieval and Clustering of Similar Words[C]//Proceedings of COLING-ACL’98.Montreal,Canada:[s.n.],1998:768-774. 被引量:1
  • 9何娟,高志强,陆青健,瞿裕忠.基于词汇相似度的元素级本体匹配[J].计算机工程,2006,32(16):185-187. 被引量:25
  • 10Szpektor I,Dagan I.Learning Entailment Rules for Unary Templates[C]//Proceedings of the 22nd Inter-national Conference on Computational Linguistics.Manchester,UK:[s.n.],2008:849-856. 被引量:1

二级参考文献41

  • 1石晶,戴国忠.基于知网的文本推理[J].中文信息学报,2006,20(1):76-84. 被引量:8
  • 2Akhmatova, Elena. Textual Entailment Resolution via Atomic Proposition[C]//Proceedings of the PASCAL Challenges Workshop on Recognising Textual Entailment. 2005. 被引量:1
  • 3Andreevskaia, Alina, Zhuoyan Li and Sabine Berger. Can Shallow Predicate Argument Structure Determine Entailment? [C]//Proceedings of the PASCAL Challenges Workshop on Recognising Textual Entailment. 2005 :. 被引量:1
  • 4Bar-Haim, Roy, Idan Szpektor and Oren Gliekman. Definition and Analysis of Intermediate Entailment Levels[C]//Proceeding of the ACL Workshop on Em pirical Modeling of Semantic Equivalence and Entailment. 2005:55-60. 被引量:1
  • 5Barzilay, Regina and Kathleen McKeown (2001) Extracting Paraphrases from a Parallel Corpus[C]// ACL/EACL. 2001 : 50-57. 被引量:1
  • 6Barzilay, Regina and Lillian Lee. Learning to Paraphrase: An Unsupervised Approach Using Multiple- Sequence Alignment[C]//Proceeding of the NAACLHLT. 2003: 16-23. 被引量:1
  • 7Bos, Johan and Katja Markert. Combining Shallow and Deep NLP Methods for Recognizing Textual En tailment[C]//Proceedings of the PASCAL Challenges Workshop on Recognising Textual Entailment. 2005. 被引量:1
  • 8Dagan, Ido and Oren Glickman. Probabilistic Textual Entailment: Generic Applied Modeling of Language Variability[C]//PASAL workshop on Learning Meth ods for Text Understanding and Mining, Grenoble France. 2004. 被引量:1
  • 9Dagan, Ido, Oren Glickman, Alfio Gliozzo, Efrat Marmorshtein, Carlo Strapparava. Direct Word Sense Matching for Lexical Substitution[C]//COLING-ACL 06. 2006. 被引量:1
  • 10Dagan, Ido, Oren Glickman and Bernado Magnini. The PASCAL Recognising Textual Entailment Challenge[J]. Lecture Notes in Computer Science, 2006,3944:177-190. 被引量:1

共引文献41

同被引文献38

引证文献7

二级引证文献33

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部