High grain protein content(GPC) reduces rice eating and cooking quality(ECQ). We generated OsAAP6 and OsAAP10 knockout mutants in three high-yielding japonica varieties and one japonica line using the CRISPR/Cas9 syst...High grain protein content(GPC) reduces rice eating and cooking quality(ECQ). We generated OsAAP6 and OsAAP10 knockout mutants in three high-yielding japonica varieties and one japonica line using the CRISPR/Cas9 system. Mutation efficiency varied with genetic background in the T_0 generation, and GPC in the T_1 generation decreased significantly,owing mainly to a reduction in glutelin content. Amylose content was down-regulated significantly in some Osaap6 and all Osaap10 mutants. The increased taste value of these mutants was supported by Rapid Visco Analysis(RVA) profiles, which showed higher peak viscosity and breakdown viscosity and lower setback viscosity than the wild type. There were no significant deficiencies in agronomic traits of the mutants. Targeted mutagenesis of OsAAP6 and OsAAP10, especially OsAAP10, using the CRISPR/Cas9 system can rapidly reduce GPC and improve ECQ of rice, providing a new strategy for the breeding cultivars with desired ECQ.展开更多
Purpose: Bioinformatics-based approach to screen and analyze differentially expressed genes associated with the biological characteristics of Ewing sarcoma. Means: The GSE17674 dataset was selected for analysis, obtai...Purpose: Bioinformatics-based approach to screen and analyze differentially expressed genes associated with the biological characteristics of Ewing sarcoma. Means: The GSE17674 dataset was selected for analysis, obtained by data retrieval based on the GEO public database. The R language limma toolkit was used to screen DEmRNAs. After the data were normalized, the Metascape online analysis software and the R language clusterProfiler package were used to analyze the GO function and KEGG pathway enrichment of DEmRNAs lines, respectively. The string database was selected for PPI analysis, and the results were imported into Cytoscape software to derive the core modules and predicted core genes. The genes selected above were analyzed for tissue localization specificity. Results: Through the analysis of GSE17674, differentially expressed genes were screened out, and GO and KEGG analyses were performed on the differentially expressed genes. The GO functional enrichment analysis was mainly enriched in the process of muscle system, muscle contraction, myocyte development, contractile fibers, myogenic fibers, myofibers, myofibrillar segments, actin binding, structural composition of muscle, and actin filament binding. KEGG pathway analysis showed that the core pathways associated with the development of ES were the core genes for myocardial contraction, congestive cardiomyopathy, and hypertrophic cardiomyopathy. Five Hub genes were obtained based on Cytoscape prediction. Tissue localization specificity analysis of Hub genes was performed, and a total of 2 Hub genes with tissue specificity were screened;MYH6 was specifically expressed in cardiac cells and MYL1 was specifically expressed in skeletal muscle cells. Conclusions: The differential genes screened will help to understand the molecular mechanisms underlying the highly invasive and metastasis-prone biological characteristics of ES, as well as provide new ideas for clinical drug-targeted treatment of ES.展开更多
Hepatocellular carcinoma(HCC)is one of the most common malignancies,and its treatment is limited.With the understanding of key genes and signaling pathways in the occurrence and development of HCC,targeted drugs with ...Hepatocellular carcinoma(HCC)is one of the most common malignancies,and its treatment is limited.With the understanding of key genes and signaling pathways in the occurrence and development of HCC,targeted drugs with high selectivity and low toxicity have been developed continuously,bringing a variety of options for the treatment of advanced HCC.In this article,the research progress on representative drugs of targeted therapy and potential therapeutic targets for HCC are reviewed.展开更多
CRISPR (clustered regularly interspaced short palindromic repeats)-Cas9-based genome editing has revolutionized func- tional genomics in many biological research fields. The specificity and potency of CR1SPR-Cas9 ge...CRISPR (clustered regularly interspaced short palindromic repeats)-Cas9-based genome editing has revolutionized func- tional genomics in many biological research fields. The specificity and potency of CR1SPR-Cas9 genome editing make it ideal for investigating the function of genes in vivo (Hsu et al., 2014). Gene duplication is a key driver of evolu- tionary novelty (Taylor and Raes, 2004). However, duplicated genes with near-identical sequences and functional redun- dancy have posed challenges for genetic analysis (Woollard, 2005). The functions of duplicated genes can be assessed by simultaneous knockdown using homology-based methods such as RNA interference (RNAi) (Tischler et al., 2006), Generation of double or triple mutants is an alternative way to assess functional redundancy of duplicated genes, However, generation of such compound mutants by forward or reverse genetic methods is time consuming.展开更多
目的探讨下一代测序(NGS)技术应用于肿瘤个体化治疗的可行性。方法选取2016年1月至2017年7月间中山大学肿瘤防治中心收治的20例肿瘤患者的临床样本,采用Illumina Next Seq500平台,利用靶向捕获建库技术,检测20例肿瘤样本中295个与肿瘤...目的探讨下一代测序(NGS)技术应用于肿瘤个体化治疗的可行性。方法选取2016年1月至2017年7月间中山大学肿瘤防治中心收治的20例肿瘤患者的临床样本,采用Illumina Next Seq500平台,利用靶向捕获建库技术,检测20例肿瘤样本中295个与肿瘤发生机制及靶向治疗密切相关的基因,采用传统PCR技术如荧光原位杂交(FISH)、飞行质谱(Sequenom MassARRAY)、一代测序(Sanger)或扩增阻滞突变系统(ARMS-PCR)等技术进行验证。结果 NGS检测技术参数稳定,与传统PCR技术检测结果符合率为100. 0%。结论与传统方法相比,NGS技术在临床应用中可同时检测多个可能的药物靶点,推动精准分子诊断及个体化治疗发展。展开更多
The classic method for gene knockout (KO) is based on homologous recombination (HR) and embryonic stem cell technique (Gerlai,1996).Actually,the procedure of homologous replacement is complicated and time consuming,al...The classic method for gene knockout (KO) is based on homologous recombination (HR) and embryonic stem cell technique (Gerlai,1996).Actually,the procedure of homologous replacement is complicated and time consuming,although it has been popular during the past decades.Recent years,genome editing which can cause DNA sequence-specific mutations in the genomes of cellular展开更多
The Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-associated protein 9 (CRISPR/Cas9)-based genomeediting system is a revolutionary technology for targeted muta- genesis in molecular biology re...The Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-associated protein 9 (CRISPR/Cas9)-based genomeediting system is a revolutionary technology for targeted muta- genesis in molecular biology research and genetic improvement of traits in crops (Cong et al., 2013; Ma et al., 2015, 2016). Agronomic traits of crops are controlled by major genes and quantitative trait loci (QTL). Therefore, the CRISPR/Cas9 system can be used to effectively and rapidly produce mutant traits by different strategies (Figure 1A-1C). The most common application of the targeted editing system in genetic improvement is to knock out completely the functions of target genes, usually by editing site(s) in the coding sequences (CDS) to produce null-allele mutants (Figure 1A).展开更多
基金financially supported by National Key Research and Development Program of China(2016YFD0100501)the National Natural Science Foundation of China(31871241,31371233)+3 种基金the Natural Science Foundation of Jiangsu Province(BE2017345,PZCZ201702,BE2018351)the Research and Innovation Program of Postgraduate in Jiangsu Province(KYCX17_1886)the Priority Academic Program Development of Jiangsu Higher Education Institutionsthe Yangzhou University International Academic Exchange Fund。
文摘High grain protein content(GPC) reduces rice eating and cooking quality(ECQ). We generated OsAAP6 and OsAAP10 knockout mutants in three high-yielding japonica varieties and one japonica line using the CRISPR/Cas9 system. Mutation efficiency varied with genetic background in the T_0 generation, and GPC in the T_1 generation decreased significantly,owing mainly to a reduction in glutelin content. Amylose content was down-regulated significantly in some Osaap6 and all Osaap10 mutants. The increased taste value of these mutants was supported by Rapid Visco Analysis(RVA) profiles, which showed higher peak viscosity and breakdown viscosity and lower setback viscosity than the wild type. There were no significant deficiencies in agronomic traits of the mutants. Targeted mutagenesis of OsAAP6 and OsAAP10, especially OsAAP10, using the CRISPR/Cas9 system can rapidly reduce GPC and improve ECQ of rice, providing a new strategy for the breeding cultivars with desired ECQ.
文摘Purpose: Bioinformatics-based approach to screen and analyze differentially expressed genes associated with the biological characteristics of Ewing sarcoma. Means: The GSE17674 dataset was selected for analysis, obtained by data retrieval based on the GEO public database. The R language limma toolkit was used to screen DEmRNAs. After the data were normalized, the Metascape online analysis software and the R language clusterProfiler package were used to analyze the GO function and KEGG pathway enrichment of DEmRNAs lines, respectively. The string database was selected for PPI analysis, and the results were imported into Cytoscape software to derive the core modules and predicted core genes. The genes selected above were analyzed for tissue localization specificity. Results: Through the analysis of GSE17674, differentially expressed genes were screened out, and GO and KEGG analyses were performed on the differentially expressed genes. The GO functional enrichment analysis was mainly enriched in the process of muscle system, muscle contraction, myocyte development, contractile fibers, myogenic fibers, myofibers, myofibrillar segments, actin binding, structural composition of muscle, and actin filament binding. KEGG pathway analysis showed that the core pathways associated with the development of ES were the core genes for myocardial contraction, congestive cardiomyopathy, and hypertrophic cardiomyopathy. Five Hub genes were obtained based on Cytoscape prediction. Tissue localization specificity analysis of Hub genes was performed, and a total of 2 Hub genes with tissue specificity were screened;MYH6 was specifically expressed in cardiac cells and MYL1 was specifically expressed in skeletal muscle cells. Conclusions: The differential genes screened will help to understand the molecular mechanisms underlying the highly invasive and metastasis-prone biological characteristics of ES, as well as provide new ideas for clinical drug-targeted treatment of ES.
基金the Research Project 2017 of Health and Family Planning Commission of Hunan Province(A2017015).
文摘Hepatocellular carcinoma(HCC)is one of the most common malignancies,and its treatment is limited.With the understanding of key genes and signaling pathways in the occurrence and development of HCC,targeted drugs with high selectivity and low toxicity have been developed continuously,bringing a variety of options for the treatment of advanced HCC.In this article,the research progress on representative drugs of targeted therapy and potential therapeutic targets for HCC are reviewed.
基金supported by National Institutes of Health(NIH grant R01GM054657)to A.D.C
文摘CRISPR (clustered regularly interspaced short palindromic repeats)-Cas9-based genome editing has revolutionized func- tional genomics in many biological research fields. The specificity and potency of CR1SPR-Cas9 genome editing make it ideal for investigating the function of genes in vivo (Hsu et al., 2014). Gene duplication is a key driver of evolu- tionary novelty (Taylor and Raes, 2004). However, duplicated genes with near-identical sequences and functional redun- dancy have posed challenges for genetic analysis (Woollard, 2005). The functions of duplicated genes can be assessed by simultaneous knockdown using homology-based methods such as RNA interference (RNAi) (Tischler et al., 2006), Generation of double or triple mutants is an alternative way to assess functional redundancy of duplicated genes, However, generation of such compound mutants by forward or reverse genetic methods is time consuming.
基金supported by the National Key Research and Development Plan of China(2017YFD0501602)the Support Project of High-level Teachers in Beijing Municipal Universities in the Period of 13th Five Plan(IDHT20170516)
文摘The classic method for gene knockout (KO) is based on homologous recombination (HR) and embryonic stem cell technique (Gerlai,1996).Actually,the procedure of homologous replacement is complicated and time consuming,although it has been popular during the past decades.Recent years,genome editing which can cause DNA sequence-specific mutations in the genomes of cellular
文摘The Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-associated protein 9 (CRISPR/Cas9)-based genomeediting system is a revolutionary technology for targeted muta- genesis in molecular biology research and genetic improvement of traits in crops (Cong et al., 2013; Ma et al., 2015, 2016). Agronomic traits of crops are controlled by major genes and quantitative trait loci (QTL). Therefore, the CRISPR/Cas9 system can be used to effectively and rapidly produce mutant traits by different strategies (Figure 1A-1C). The most common application of the targeted editing system in genetic improvement is to knock out completely the functions of target genes, usually by editing site(s) in the coding sequences (CDS) to produce null-allele mutants (Figure 1A).