利用Aspen Plus 7.2软件搭建了基于ELECNRTL热力学方法的基础模型,采用响应面设计得到了装置热负荷与各影响因素之间的高阶拟合回归方程,并以此为依据得到了最小装置热负荷与对应的关键优化操作参数。结果表明,当热料占比为0.900、塔底...利用Aspen Plus 7.2软件搭建了基于ELECNRTL热力学方法的基础模型,采用响应面设计得到了装置热负荷与各影响因素之间的高阶拟合回归方程,并以此为依据得到了最小装置热负荷与对应的关键优化操作参数。结果表明,当热料占比为0.900、塔底压力为400 kPa、侧线采出位置为第18块塔板、热料进料温度为145℃时,装置热负荷由7.139 MW降至6.022 MW,其降幅高达15.65%。为了有效验证上述结果的可靠性,在最佳操作条件下对实际生产装置进行现场标定,测得该装置的实际热负荷为6.036 MW,降幅约为15.45%,与预测值较为接近。本文为进一步挖掘酸性水汽提装置的节能潜力提供了可靠的理论依据与改造思路,对同类装置亦具有一定借鉴作用。展开更多
Polymeric nanoparticles of poly(methyl methacrylate)were obtained by emulsion polymerization techniques in a proce ss of two stages.The particles were functionalized with acrylic acid,curcumin,and fumaramide and three...Polymeric nanoparticles of poly(methyl methacrylate)were obtained by emulsion polymerization techniques in a proce ss of two stages.The particles were functionalized with acrylic acid,curcumin,and fumaramide and three series of polymeric particles were obtained.The incorporation of functional groups was confirmed by Fourier transform-infrared spectrosocopy(FT-IR)and ultraviolet-visible(UV-Vis)methods.The spherical morphology of particles with an average diameter of 100 nm was observed by scartning electron microscopy(SEM).The polymeric materials were used for recovery of[Eu]from synthetic solutions.The nanoparticles show excellent chelation capacity to trap rare-earth ions,because they recover more than 85%of[Eu]at pH of 2.The images of SEM after extraction process show arrays between particles with larger average particle sizes to 1.5 um.In addition,the particles have a good stripping capacity,exceeding 50%of it,maintaining their homogeneity in morphology and good stability in dispersion for the recovery and stripping processes.A pseudo-second model order is obtained for the extraction and stripping processes while the best results of stripping process are obtained at pH of 6.展开更多
Lithium metal battery has great development potential because of its lowest electrochemical potential and highest theoretical capacity.However,the uneven deposition of Li^(+)flux in the process of deposition and strip...Lithium metal battery has great development potential because of its lowest electrochemical potential and highest theoretical capacity.However,the uneven deposition of Li^(+)flux in the process of deposition and stripping induces the vigorous growth of lithium dendrites,which results in severely battery performance degradation and serious safety hazards.Here,the tetragonal BaTiO3 polarized by high voltage corona was used to build an artificial protective layer with uniform positive polarization direction,which enables uniform Li^(+)flux.In contrast to traditional strategies of using protective layer,which can guide the uniform deposition of lithium metal.The ferroelectric protective layer can accurately anchor the Li^(+)and achieve bottom deposition of lithium due to the automatic adjustment of the electric field.Simultaneously,the huge volume changes caused by Li^(+)migration change of the lithium metal anode during charging and discharging is functioned to excite the piezoelectric effect of the protective layer,and achieve seamless dynamic tuning of lithium deposition/stripping.This dynamic effect can accurately anchor and capture Li^(+).Finally,the layer-modified Li anode enables reversible Li plating/stripping over 1500 h at 1 mA cm^(-2)and 50℃in symmetric cells.In addition,the assembled Li-S full cell exhibits over 300 cycles with N/P≈1.35.This work provides a new perspective on the uniform Li^(+)flux at the Li-anode interface of the artificial protective layer.展开更多
Refinery sour water primarily originates from the tops of towers in various units and coker condensate,and cannot be discharged directly to a wastewater treatment plant due to high levels of chemical oxygen demand(COD...Refinery sour water primarily originates from the tops of towers in various units and coker condensate,and cannot be discharged directly to a wastewater treatment plant due to high levels of chemical oxygen demand(COD)and organic sulfur contents.Even after the recovery of H_(2)S from the sour water by the stripping process,the effluent still contains a high concentration of dissolved organic sulfur(DOS),which can have a huge bad influence.While chemical composition of dissolved organic matter(DOM)in refinery wastewater has been extensively studied,the investigation of recalcitrant DOS from sour waters remains unclear.In the present study,chemical composition of sour water DOMs(especially DOS)was investigated using fluorescence spectroscopy(excitation-emission matrix,EEM)and mass spectrometry,including gas chromatography-mass spectrometry(GC-MS)and high-resolution Orbitrap MS.The GC-MS and EEM results showed that volatile and low-aromaticity compounds were effectively removed during the stripping process,while compounds with high hydrophilicity and humification degree were found to be more recalcitrant.The Orbitrap MS results showed that weak-polar oxygenated sulfur compounds were easier to be removed than oxygenated compounds.However,the effluent still contained significant amounts of sulfur-containing compounds with multiple sulfur atoms,particularly in the form of highly unsaturated and aromatic compounds.The Orbitrap MS/MS results of CHOS-containing compounds from the effluent indicate that the sulfur atoms may exist as sulfonates,disulfide bonds,thioethers.Understanding the composition and structure of sour water DOS is crucial for the development of effective treatment processes that can target polysulfide compounds and minimize their impact on the environment.展开更多
基金Project supported by Secretaria de Investigación y Posgrado Instituto Politecnico Nacional(20221369,20231939,2027024,20230751)Consejo Nacional de Humanidades,Ciencia y Tecnologias CONAHCyT。
文摘Polymeric nanoparticles of poly(methyl methacrylate)were obtained by emulsion polymerization techniques in a proce ss of two stages.The particles were functionalized with acrylic acid,curcumin,and fumaramide and three series of polymeric particles were obtained.The incorporation of functional groups was confirmed by Fourier transform-infrared spectrosocopy(FT-IR)and ultraviolet-visible(UV-Vis)methods.The spherical morphology of particles with an average diameter of 100 nm was observed by scartning electron microscopy(SEM).The polymeric materials were used for recovery of[Eu]from synthetic solutions.The nanoparticles show excellent chelation capacity to trap rare-earth ions,because they recover more than 85%of[Eu]at pH of 2.The images of SEM after extraction process show arrays between particles with larger average particle sizes to 1.5 um.In addition,the particles have a good stripping capacity,exceeding 50%of it,maintaining their homogeneity in morphology and good stability in dispersion for the recovery and stripping processes.A pseudo-second model order is obtained for the extraction and stripping processes while the best results of stripping process are obtained at pH of 6.
基金supported by projects from the National Natural Science Foundation of China[20A20145,21878195,21805198]the Distinguished Young Foundation of Sichuan Province[2020JDJQ0027]+5 种基金the 2020 Strategic Cooperation Project between Sichuan University and the Zigong Municipal Peoples Government[No.2020CDZG-09]State Key Laboratory of Polymer Materials Engineering[No.2020-3-02]Sichuan Provincial Department of Science and Technology[No.2020YFG0471,No.2020YFG0022,No.2022YFG0124]the Sichuan Province Science and Technology Achievement Transfer and Transformation Project[No21ZHSF0111]the Sichuan University Postdoctoral Interdisciplinary Innovation Fund[2021SCU12084]Start-up funding of Chemistry and Chemical Engineering Guangdong Laboratory[No.2122010]
文摘Lithium metal battery has great development potential because of its lowest electrochemical potential and highest theoretical capacity.However,the uneven deposition of Li^(+)flux in the process of deposition and stripping induces the vigorous growth of lithium dendrites,which results in severely battery performance degradation and serious safety hazards.Here,the tetragonal BaTiO3 polarized by high voltage corona was used to build an artificial protective layer with uniform positive polarization direction,which enables uniform Li^(+)flux.In contrast to traditional strategies of using protective layer,which can guide the uniform deposition of lithium metal.The ferroelectric protective layer can accurately anchor the Li^(+)and achieve bottom deposition of lithium due to the automatic adjustment of the electric field.Simultaneously,the huge volume changes caused by Li^(+)migration change of the lithium metal anode during charging and discharging is functioned to excite the piezoelectric effect of the protective layer,and achieve seamless dynamic tuning of lithium deposition/stripping.This dynamic effect can accurately anchor and capture Li^(+).Finally,the layer-modified Li anode enables reversible Li plating/stripping over 1500 h at 1 mA cm^(-2)and 50℃in symmetric cells.In addition,the assembled Li-S full cell exhibits over 300 cycles with N/P≈1.35.This work provides a new perspective on the uniform Li^(+)flux at the Li-anode interface of the artificial protective layer.
基金supported by the National Natural Science Foundation of China(42003059)State Key Laboratory of Coal Mining and Clean Utilization(2021-CMCU-KF009)the Science Foundation of China University of Petroleum,Beijing(No.2462023YJRC003)。
文摘Refinery sour water primarily originates from the tops of towers in various units and coker condensate,and cannot be discharged directly to a wastewater treatment plant due to high levels of chemical oxygen demand(COD)and organic sulfur contents.Even after the recovery of H_(2)S from the sour water by the stripping process,the effluent still contains a high concentration of dissolved organic sulfur(DOS),which can have a huge bad influence.While chemical composition of dissolved organic matter(DOM)in refinery wastewater has been extensively studied,the investigation of recalcitrant DOS from sour waters remains unclear.In the present study,chemical composition of sour water DOMs(especially DOS)was investigated using fluorescence spectroscopy(excitation-emission matrix,EEM)and mass spectrometry,including gas chromatography-mass spectrometry(GC-MS)and high-resolution Orbitrap MS.The GC-MS and EEM results showed that volatile and low-aromaticity compounds were effectively removed during the stripping process,while compounds with high hydrophilicity and humification degree were found to be more recalcitrant.The Orbitrap MS results showed that weak-polar oxygenated sulfur compounds were easier to be removed than oxygenated compounds.However,the effluent still contained significant amounts of sulfur-containing compounds with multiple sulfur atoms,particularly in the form of highly unsaturated and aromatic compounds.The Orbitrap MS/MS results of CHOS-containing compounds from the effluent indicate that the sulfur atoms may exist as sulfonates,disulfide bonds,thioethers.Understanding the composition and structure of sour water DOS is crucial for the development of effective treatment processes that can target polysulfide compounds and minimize their impact on the environment.