While there have been multiple recent reports in the literature focusing on the effects of magnetic field on the phase transformation behaviors,the research conducted with an ultra-high magnetic field greater than 20 ...While there have been multiple recent reports in the literature focusing on the effects of magnetic field on the phase transformation behaviors,the research conducted with an ultra-high magnetic field greater than 20 T is still preliminary.In the current study,the structure evolution of Co-B alloys are experimentally studied with undercooling.The effects of a 25 T magnetic field on the solidification behavior and the subsequent solid-state phase transformation behavior have been investigated.The 25 T magnetic field is confirmed to have little effect on the homogeneous nucleation,but have some influence on the heterogeneous nucleation of Co_(3) B and Co_(23)B6 phases by modifying the wetting angleθ.The decomposition of Co_(23)B6 phase in the subsequent cooling process can be effectively suppressed by applying the 25 T magnetic field.The present work might be helpful for not only theoretically understanding the influence of ultra-high magnetic field on the phase transformation behaviors but a potential technology of field-manipulation of magnetic materials.展开更多
基金supported by the National Natural Science Foundation of China(No.51690164)the fund of National Key Laboratory for Precision Hot Processing of Metals(6142909200104)+2 种基金National Training Program of Innovation and Entrepreneurship for Undergraduates(S202010699137)the Fundamental Research Funds for the Central Universitiesthe support of the LNCMI-CNRS。
文摘While there have been multiple recent reports in the literature focusing on the effects of magnetic field on the phase transformation behaviors,the research conducted with an ultra-high magnetic field greater than 20 T is still preliminary.In the current study,the structure evolution of Co-B alloys are experimentally studied with undercooling.The effects of a 25 T magnetic field on the solidification behavior and the subsequent solid-state phase transformation behavior have been investigated.The 25 T magnetic field is confirmed to have little effect on the homogeneous nucleation,but have some influence on the heterogeneous nucleation of Co_(3) B and Co_(23)B6 phases by modifying the wetting angleθ.The decomposition of Co_(23)B6 phase in the subsequent cooling process can be effectively suppressed by applying the 25 T magnetic field.The present work might be helpful for not only theoretically understanding the influence of ultra-high magnetic field on the phase transformation behaviors but a potential technology of field-manipulation of magnetic materials.
基金financial support of China National Funds for Distinguished Young Scientists (51125002)Natural Science Foundation of China(Grant no.51071127)+4 种基金Free Research Fund of State Key Lab.of Solidication Processing (09-QZ-2008and 24-TZ-2009)111 project (B08040)Huo Ying-dong Yong Teacher Fund (111052)Fundamental Research Fund of Northwestern Polytechnical University(JC200801,JC201008)National Basic Research Program of China (973 Program) 2011CB610403