A Mond-Weir type second-order dual continuous programming problem associated with a class of nondifferentiable continuous programming problems is formulated. Under second-order pseudo-invexity and second-order quasi-i...A Mond-Weir type second-order dual continuous programming problem associated with a class of nondifferentiable continuous programming problems is formulated. Under second-order pseudo-invexity and second-order quasi-invexity various duality theorems are established for this pair of dual continuous programming problems. A pair of dual continuous programming problems with natural boundary values is constructed and the proofs of its various duality results are briefly outlined. Further, it is shown that our results can be regarded as dynamic generalizations of corresponding (static) second-order duality theorems for a class of nondifferentiable nonlinear programming problems already studied in the literature.展开更多
Fritz John and Karush-Kuhn-Tucker type optimality conditions for a nondifferentiable multiobjective variational problem are derived. As an application of Karush-Kuhn-Tucker type optimality conditions, Mond-weir type s...Fritz John and Karush-Kuhn-Tucker type optimality conditions for a nondifferentiable multiobjective variational problem are derived. As an application of Karush-Kuhn-Tucker type optimality conditions, Mond-weir type second-order nondifferentiable multiobjective dual variational problems is constructed. Various duality results for the pair of Mond-Weir type second-order dual variational problems are proved under second-order pseudoinvexity and second-order quasi-invexity. A pair of Mond-Weir type dual variational problems with natural boundary values is formulated to derive various duality results. Finally, it is pointed out that our results can be considered as dynamic generalizations of their static counterparts existing in the literature.展开更多
A second-order dual problem is formulated for a class of continuous programming problem in which both objective and constrained functions contain support functions, hence it is nondifferentiable. Under second-order in...A second-order dual problem is formulated for a class of continuous programming problem in which both objective and constrained functions contain support functions, hence it is nondifferentiable. Under second-order invexity and second-order pseudoinvexity, weak, strong and converse duality theorems are established for this pair of dual problems. Special cases are deduced and a pair of dual continuous problems with natural boundary values is constructed. A close relationship between duality results of our problems and those of the corresponding (static) nonlinear programming problem with support functions is briefly outlined.展开更多
In this paper, we first formulate a second-order multiobjective symmetric primal-dual pair over arbitrary cones by introducing two different functions f : R^n × R^m → Rk and g : R^n × R^m → R^l in each k...In this paper, we first formulate a second-order multiobjective symmetric primal-dual pair over arbitrary cones by introducing two different functions f : R^n × R^m → Rk and g : R^n × R^m → R^l in each k-objectives as well as l-constraints. Further, appropriate duality relations are established under second-order(F, α, ρ, d)-convexity assumptions. A nontrivial example which is second-order(F, α, ρ, d)-convex but not secondorder convex/F-convex is also illustrated. Moreover, a second-order minimax mixed integer dual programs is formulated and a duality theorem is established using second-order(F, α, ρ, d)-convexity assumptions. A self duality theorem is also obtained by assuming the functions involved to be skew-symmetric.展开更多
A second-order Mond-Weir type dual problem is formulated for a class of continuous programming problems in which both objective and constraint functions contain support functions;hence it is nondifferentiable. Under s...A second-order Mond-Weir type dual problem is formulated for a class of continuous programming problems in which both objective and constraint functions contain support functions;hence it is nondifferentiable. Under second-order strict pseudoinvexity, second-order pseudoinvexity and second-order quasi-invexity assumptions on functionals, weak, strong, strict converse and converse duality theorems are established for this pair of dual continuous programming problems. Special cases are deduced and a pair of dual continuous problems with natural boundary values is constructed. A close relationship between the duality results of our problems and those of the corresponding (static) nonlinear programming problem with support functions is briefly outlined.展开更多
The purpose of this paper is to introduce second order (K, F)-pseudoconvex and second order strongly (K, F)- pseudoconvex functions which are a generalization of cone-pseudoconvex and strongly cone-pseudoconvex functi...The purpose of this paper is to introduce second order (K, F)-pseudoconvex and second order strongly (K, F)- pseudoconvex functions which are a generalization of cone-pseudoconvex and strongly cone-pseudoconvex functions. A pair of second order symmetric dual multiobjective nonlinear programs is formulated by using the considered functions. Furthermore, the weak, strong and converse duality theorems for this pair are established. Finally, a self duality theorem is given.展开更多
文摘A Mond-Weir type second-order dual continuous programming problem associated with a class of nondifferentiable continuous programming problems is formulated. Under second-order pseudo-invexity and second-order quasi-invexity various duality theorems are established for this pair of dual continuous programming problems. A pair of dual continuous programming problems with natural boundary values is constructed and the proofs of its various duality results are briefly outlined. Further, it is shown that our results can be regarded as dynamic generalizations of corresponding (static) second-order duality theorems for a class of nondifferentiable nonlinear programming problems already studied in the literature.
文摘Fritz John and Karush-Kuhn-Tucker type optimality conditions for a nondifferentiable multiobjective variational problem are derived. As an application of Karush-Kuhn-Tucker type optimality conditions, Mond-weir type second-order nondifferentiable multiobjective dual variational problems is constructed. Various duality results for the pair of Mond-Weir type second-order dual variational problems are proved under second-order pseudoinvexity and second-order quasi-invexity. A pair of Mond-Weir type dual variational problems with natural boundary values is formulated to derive various duality results. Finally, it is pointed out that our results can be considered as dynamic generalizations of their static counterparts existing in the literature.
文摘A second-order dual problem is formulated for a class of continuous programming problem in which both objective and constrained functions contain support functions, hence it is nondifferentiable. Under second-order invexity and second-order pseudoinvexity, weak, strong and converse duality theorems are established for this pair of dual problems. Special cases are deduced and a pair of dual continuous problems with natural boundary values is constructed. A close relationship between duality results of our problems and those of the corresponding (static) nonlinear programming problem with support functions is briefly outlined.
基金Department of Mathematics,Indian Institute of Technology Patna,Patna 800 013,India
文摘In this paper, we first formulate a second-order multiobjective symmetric primal-dual pair over arbitrary cones by introducing two different functions f : R^n × R^m → Rk and g : R^n × R^m → R^l in each k-objectives as well as l-constraints. Further, appropriate duality relations are established under second-order(F, α, ρ, d)-convexity assumptions. A nontrivial example which is second-order(F, α, ρ, d)-convex but not secondorder convex/F-convex is also illustrated. Moreover, a second-order minimax mixed integer dual programs is formulated and a duality theorem is established using second-order(F, α, ρ, d)-convexity assumptions. A self duality theorem is also obtained by assuming the functions involved to be skew-symmetric.
文摘A second-order Mond-Weir type dual problem is formulated for a class of continuous programming problems in which both objective and constraint functions contain support functions;hence it is nondifferentiable. Under second-order strict pseudoinvexity, second-order pseudoinvexity and second-order quasi-invexity assumptions on functionals, weak, strong, strict converse and converse duality theorems are established for this pair of dual continuous programming problems. Special cases are deduced and a pair of dual continuous problems with natural boundary values is constructed. A close relationship between the duality results of our problems and those of the corresponding (static) nonlinear programming problem with support functions is briefly outlined.
文摘The purpose of this paper is to introduce second order (K, F)-pseudoconvex and second order strongly (K, F)- pseudoconvex functions which are a generalization of cone-pseudoconvex and strongly cone-pseudoconvex functions. A pair of second order symmetric dual multiobjective nonlinear programs is formulated by using the considered functions. Furthermore, the weak, strong and converse duality theorems for this pair are established. Finally, a self duality theorem is given.