摘要
作者构造了一类不可微规划问题的一阶和二阶对偶模型,其目标函数含有紧凸集的支撑函数项。利用FritzJohn最优性必要条件,在适当条件下建立了这两类一阶和二阶对偶模型的弱和逆对偶性定理。
In this paper first order and second order dual models in a class of nondifferentiable programs in which every component of the objective function contains a term involving the support function of a compact convex set are formulated. We use the Fritz John necessary optimality conditions to establish weak and converse duality theorems for the two types of dual models under suitable conditions.
出处
《重庆师范大学学报(自然科学版)》
CAS
2005年第3期18-24,共7页
Journal of Chongqing Normal University:Natural Science
基金
国家自然科学基金(No.10471159)
教育部"新世纪优秀人才支持计划"
教育部留学回国人员科研启动基金
重庆市自然科学基金
关键词
一阶和二阶对偶模型
对偶性定理
不可微规划问题
广义凸性
first and second order dual models
duality theorems
nondifferentiable programming problems
generalized convexity