期刊文献+

非线性规划中的二阶逆对偶定理

Second order converse duality theorem for nonlinear programming
下载PDF
导出
摘要 指出了Husain最近提出的二阶逆对偶定理中的一个矛盾之处,即定理1假设中的矩阵[r*2f(x*)+2(y*Tg(x*))]p*是正定或负定的,但定理的结果意味着p*=0,显然,这个结果导致定理的条件和结论矛盾。论文对这不足问题进行了修正,给出了新的Huard模型二阶逆对偶定理并予以证明。 This paper points out certain shortcomings for second order converse duality in the recent work of Husain, that is, the matrix △[r^*△^2f(x^* )+ △^2(y^*Tg(x^* ))]p^* is positive or negative definite in the assumption of Theorem 1, and the result of Theorem 1 implies p^* = 0. It is obvious that the assumption and the result are inconsistent. This paper suggests appropriate modifications for Fritz John second order converse duality and points out a new Huard second order converse duality Theorem and proves it.
作者 张萍 黄光鑫
出处 《成都理工大学学报(自然科学版)》 CAS CSCD 北大核心 2007年第4期472-474,共3页 Journal of Chengdu University of Technology: Science & Technology Edition
基金 成都理工大学科学研究基金资助项目(R230249)
关键词 Fritz John 二阶对偶模型 逆对偶 Huard 逆对偶定理 Fritz John second order dual model, converse duality Huard second order converseduality
  • 相关文献

参考文献3

  • 1HUSAIN N G.Rueda,JABEEN Z.Fritz John second order duality for nonlinear programming[J].Applied Mathematics Letters,2001,14:513-518. 被引量:1
  • 2NANDA S,DAS L N.Pseudo-invexity and Duality in Nonlinear Progranmfing[J].European Journal of Operational Research,1996,88:572-57. 被引量:1
  • 3杨新民.关于非线性规划的逆对偶性[J].重庆师范大学学报(自然科学版),2003,20(4):1-4. 被引量:5

二级参考文献6

  • 1NANDA S,DAS L N. Pseudo-invexity and Duality in Nonlinear Programming[J]. European Journal of Operational Research, 1996(88):572-577. 被引量:1
  • 2CHANDRA S,ABHA. A Note on Pseudo-invex and Duality in Nonlinear Programming[J]. European Journal of Operational Research,2000(122) :161-165. 被引量:1
  • 3MOND B,WEIR T. Generalized Concavity and Duality [A]. SCHAIBLE S,ZIEMBA (Eds.) W T. Generalized Concavity in Optimization and Economics [C]. New York :Academic Press, 1981. 263-279. 被引量:1
  • 4BAZARAA M S, GOODE J J. On Symmetric Duality in Nonlinear Programming [J]. Operations Research, 1973 (21): 1-9. 被引量:1
  • 5HANSON M A,MOND B. Further Generalization of Convexity in Mathematical Programming[J]. Journal of Information and Optimization Sciences, 1982 (3) :25-32. 被引量:1
  • 6MANGASARIAN O L,FROMOVITZ S. The Fritz John Necessary Optimality Conditions in the Presence jof Equality and Inequality Constrains [J]. Journal of Mathematical Analysis and Applications, 1967 (17) :37-47. 被引量:1

共引文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部