A mimetic finite difference scheme for the transient heat equation under Robin’s conditions is presented. The scheme uses second order gradient and divergence mimetic operators, on a staggered grid, to approximate th...A mimetic finite difference scheme for the transient heat equation under Robin’s conditions is presented. The scheme uses second order gradient and divergence mimetic operators, on a staggered grid, to approximate the space derivatives. The temporal derivative is replaced by a first order backward difference approximation to obtain an implicit formulation. The resulting scheme contains nonstandard finite difference stencils. An original convergence analysis by the matrix’s method shows that the proposed scheme is unconditionally stable. A comparative study against standard finite difference schemes, based on central difference or first order one side approximations, reveals the advantages of our scheme without being its implementation more expensive or difficult to achieve.展开更多
This article is concerned with a mathematical model of tumor growth governed by 2<sup>nd</sup> order diffusion equation . The source of mitotic inhibitor is almost periodic and time-dependent within the ti...This article is concerned with a mathematical model of tumor growth governed by 2<sup>nd</sup> order diffusion equation . The source of mitotic inhibitor is almost periodic and time-dependent within the tissue. The system is set up with the initial condition C(r, 0) = C<sub>0</sub>(r) and Robin type inhomogeneous boundary condition . Under certain conditions we show that there exists a unique solution for this model which is almost periodic.展开更多
We study galvanic currents on a heterogeneous surface. In electrochemistry, the oxidation-reduction reaction producing the current is commonly modeled by a nonlinear elliptic boundary value problem. The boundary condi...We study galvanic currents on a heterogeneous surface. In electrochemistry, the oxidation-reduction reaction producing the current is commonly modeled by a nonlinear elliptic boundary value problem. The boundary condition is of exponential type with periodically varying parameters. We construct an approximation by first homogenizing the problem, and then linearizing about the homogenized solution. This approximation is far more accurate than both previous approximations or direct linearization. We establish convergence estimates for both the two and three-dimensional case and provide two-dimensional numerical experiments.展开更多
文摘A mimetic finite difference scheme for the transient heat equation under Robin’s conditions is presented. The scheme uses second order gradient and divergence mimetic operators, on a staggered grid, to approximate the space derivatives. The temporal derivative is replaced by a first order backward difference approximation to obtain an implicit formulation. The resulting scheme contains nonstandard finite difference stencils. An original convergence analysis by the matrix’s method shows that the proposed scheme is unconditionally stable. A comparative study against standard finite difference schemes, based on central difference or first order one side approximations, reveals the advantages of our scheme without being its implementation more expensive or difficult to achieve.
文摘This article is concerned with a mathematical model of tumor growth governed by 2<sup>nd</sup> order diffusion equation . The source of mitotic inhibitor is almost periodic and time-dependent within the tissue. The system is set up with the initial condition C(r, 0) = C<sub>0</sub>(r) and Robin type inhomogeneous boundary condition . Under certain conditions we show that there exists a unique solution for this model which is almost periodic.
基金Acknowledgments. This research is partially supported by the National Science Foundation Grants DMS#0619080 and DMS#0605021.
文摘We study galvanic currents on a heterogeneous surface. In electrochemistry, the oxidation-reduction reaction producing the current is commonly modeled by a nonlinear elliptic boundary value problem. The boundary condition is of exponential type with periodically varying parameters. We construct an approximation by first homogenizing the problem, and then linearizing about the homogenized solution. This approximation is far more accurate than both previous approximations or direct linearization. We establish convergence estimates for both the two and three-dimensional case and provide two-dimensional numerical experiments.