摘要
本文研究了一类具有罗宾边值条件的二阶奇摄动右端不连续微分方程,用边界层函数法构造了该类方程解的渐近表达式,最后用缝接法证明了该问题解的存在性,并给出了渐近解的余项估计.
In this paper,we consider a second order singularly perturbed equation with a discontinuous right-hand function and Robin boundary value condition.Applying the boundary layer function method,we can construct an asymptotical approximation of the solution.We also prove the existence of the solution and obtain an estimation of the remainder based on the matching method.
作者
德米
倪明康
Dmitrii CHAIKOVSKII;NI Mingkang(School of Mathematical Sciences,East China Normal University,Shanghai 200241,China)
出处
《华东师范大学学报(自然科学版)》
CAS
CSCD
北大核心
2020年第2期23-34,共12页
Journal of East China Normal University(Natural Science)
基金
国家自然科学基金(11871217).
关键词
奇摄动
渐近表达式
罗宾边值条件
内部层
singular perturbation
asymptotic approximation
Robin boundary value condition
internal layer