The influence maximization problem aims to select a small set of influential nodes, termed a seed set, to maximize their influence coverage in social networks. Although the methods that are based on a greedy strategy ...The influence maximization problem aims to select a small set of influential nodes, termed a seed set, to maximize their influence coverage in social networks. Although the methods that are based on a greedy strategy can obtain good accuracy, they come at the cost of enormous computational time, and are therefore not applicable to practical scenarios in large-scale networks. In addition, the centrality heuristic algorithms that are based on network topology can be completed in relatively less time. However, they tend to fail to achieve satisfactory results because of drawbacks such as overlapped influence spread. In this work, we propose a discrete two-stage metaheuristic optimization combining quantum-behaved particle swarm optimization with Lévy flight to identify a set of the most influential spreaders. According to the framework,first, the particles in the population are tasked to conduct an exploration in the global solution space to eventually converge to an acceptable solution through the crossover and replacement operations. Second, the Lévy flight mechanism is used to perform a wandering walk on the optimal candidate solution in the population to exploit the potentially unidentified influential nodes in the network. Experiments on six real-world social networks show that the proposed algorithm achieves more satisfactory results when compared to other well-known algorithms.展开更多
To solve the difficulty of designing digital impacting filter in the receiver of random-polar modulated Extended Binary Phase Shift Keying with Continuous Phase (CP-EBPSK), a design method based on Quantum-behaved Par...To solve the difficulty of designing digital impacting filter in the receiver of random-polar modulated Extended Binary Phase Shift Keying with Continuous Phase (CP-EBPSK), a design method based on Quantum-behaved Particle Swarm Optimization (QPSO) algorithm is proposed. Firstly, QPSO is introduced elaborately, and the basic flow of QPSO is also given. Then, the demodulation principle of digital impacting filter in the communication system of CP-EBPSK with random-polar is demonstrated, and QPSO is utilized to design the digital impacting filter, which also takes the effect of finite word length into consideration when implemented by hardware. Finally, the proposed method is simulated. Simulation results show that the digital impacting filter designed by new method can derive satisfied demodulation performance.展开更多
An improved quantum-behaved particle swarm optimization (IQPSO) algorithm is employed to deter- mine aerosol size distribution (ASD). The direct problem is solved using the anomalous diffraction approximation and ...An improved quantum-behaved particle swarm optimization (IQPSO) algorithm is employed to deter- mine aerosol size distribution (ASD). The direct problem is solved using the anomalous diffraction approximation and Lambert-Beer's Law. Compared with the standard particle swarm optimization algo- rithm, the stochastic particle size optimization algorithm and the original QPSO, our IQPSO has faster convergence speed and higher accuracy within a smaller number of generations. Optimization param- eters for the IQPSO were also evaluated; we recommend using four measurement wavelengths and S0 particles. Size distributions of various aerosol types were estimated using the IQPSO under dependent and independent models. Finally, experimental ASDs at different locations in Harbin were recovered using the IQPSO. All our results confirm that the IQpSO algorithm is an effective and reliable technique for estimatinz ASD.展开更多
Mapping of three-dimensional network on chip is a key problem in the research of three-dimensional network on chip. The quality of the mapping algorithm used di- rectly affects the communication efficiency between IP ...Mapping of three-dimensional network on chip is a key problem in the research of three-dimensional network on chip. The quality of the mapping algorithm used di- rectly affects the communication efficiency between IP cores and plays an important role in the optimization of power consumption and throughput of the whole chip. In this paper, ba- sic concepts and related work of three-dimensional network on chip are introduced. Quantum-behaved particle swarm op- timization algorithm is applied to the mapping problem of three-dimensional network on chip for the first time. Sim- ulation results show that the mapping algorithm based on quantum-behaved particle swarm algorithm has faster con- vergence speed with much better optimization performance compared with the mapping algorithm based on particle swarm algorithm. It also can effectively reduce the power consumption of mapping of three-dimensional network on chip.展开更多
This paper proposes a systematic method, integrating the uniform design (UD) of experiments and quantum-behaved particle swarm optimization (QPSO), to solve the problem of a robust design for a railway vehicle suspens...This paper proposes a systematic method, integrating the uniform design (UD) of experiments and quantum-behaved particle swarm optimization (QPSO), to solve the problem of a robust design for a railway vehicle suspension system. Based on the new nonlinear creep model derived from combining Hertz contact theory, Kalker's linear theory and a heuristic nonlinear creep model, the modeling and dynamic analysis of a 24 degree-of-freedom railway vehicle system were investigated. The Lyapunov indirect method was used to examine the effects of suspension parameters, wheel conicities and wheel rolling radii on critical hunting speeds. Generally, the critical hunting speeds of a vehicle system resulting from worn wheels with different wheel rolling radii are lower than those of a vehicle system having original wheels without different wheel rolling radii. Because of worn wheels, the critical hunting speed of a running railway vehicle substantially declines over the long term. For safety reasons, it is necessary to design the suspension system parameters to increase the robustness of the system and decrease the sensitive of wheel noises. By applying UD and QPSO, the nominal-the-best signal-to-noise ratio of the system was increased from -48.17 to -34.05 dB. The rate of improvement was 29.31%. This study has demonstrated that the integration of UD and QPSO can successfully reveal the optimal solution of suspension parameters for solving the robust design problem of a railway vehicle suspension system.展开更多
In order to correct the test error caused by the dynamic characteristics of pressure sensor and avoid the influence of the error of sensor's dynamic model on compensation results,a dynamic compensation method of the ...In order to correct the test error caused by the dynamic characteristics of pressure sensor and avoid the influence of the error of sensor's dynamic model on compensation results,a dynamic compensation method of the pressure sensor is presented,which is based on quantum-behaved particle swarm optimization(QPSO)algorithm and the mean square error(MSE).By using this method,the inverse model of the sensor is built and optimized and then the coefficients of the optimal compensator are got.This method is verified by the dynamic calibration with shock tube and the dynamic characteristics of the sensor before and after compensation are analyzed in time domain and frequency domain.The results show that the working bandwidth of the sensor is extended effectively.This method can reduce dynamic measuring error and improve test accuracy in actual measurement experiments.展开更多
An effective method for automatic image inspection of fabric defects is presented. The proposed method relies on a tuned 2D-Gabor filter and quantum-behaved particle swarm optimization( QPSO) algorithm. The proposed m...An effective method for automatic image inspection of fabric defects is presented. The proposed method relies on a tuned 2D-Gabor filter and quantum-behaved particle swarm optimization( QPSO) algorithm. The proposed method consists of two main steps:( 1) training and( 2) image inspection. In the image training process,the parameters of the 2D-Gabor filters can be tuned by QPSO algorithm to match with the texture features of a defect-free template. In the inspection process, each sample image under inspection is convoluted with the selected optimized Gabor filter.Then a simple thresholding scheme is applied to generating a binary segmented result. The performance of the proposed scheme is evaluated by using a standard fabric defects database from Cotton Incorporated. Good experimental results demonstrate the efficiency of proposed method. To further evaluate the performance of the proposed method,a real time test is performed based on an on-line defect detection system. The real time test results further demonstrate the effectiveness, stability and robustness of the proposed method,which is suitable for industrial production.展开更多
基金Project supported by the Zhejiang Provincial Natural Science Foundation (Grant No.LQ20F020011)the Gansu Provincial Foundation for Distinguished Young Scholars (Grant No.23JRRA766)+1 种基金the National Natural Science Foundation of China (Grant No.62162040)the National Key Research and Development Program of China (Grant No.2020YFB1713600)。
文摘The influence maximization problem aims to select a small set of influential nodes, termed a seed set, to maximize their influence coverage in social networks. Although the methods that are based on a greedy strategy can obtain good accuracy, they come at the cost of enormous computational time, and are therefore not applicable to practical scenarios in large-scale networks. In addition, the centrality heuristic algorithms that are based on network topology can be completed in relatively less time. However, they tend to fail to achieve satisfactory results because of drawbacks such as overlapped influence spread. In this work, we propose a discrete two-stage metaheuristic optimization combining quantum-behaved particle swarm optimization with Lévy flight to identify a set of the most influential spreaders. According to the framework,first, the particles in the population are tasked to conduct an exploration in the global solution space to eventually converge to an acceptable solution through the crossover and replacement operations. Second, the Lévy flight mechanism is used to perform a wandering walk on the optimal candidate solution in the population to exploit the potentially unidentified influential nodes in the network. Experiments on six real-world social networks show that the proposed algorithm achieves more satisfactory results when compared to other well-known algorithms.
基金Supported by the National Natural Science Foundation of China (No. 60872075)
文摘To solve the difficulty of designing digital impacting filter in the receiver of random-polar modulated Extended Binary Phase Shift Keying with Continuous Phase (CP-EBPSK), a design method based on Quantum-behaved Particle Swarm Optimization (QPSO) algorithm is proposed. Firstly, QPSO is introduced elaborately, and the basic flow of QPSO is also given. Then, the demodulation principle of digital impacting filter in the communication system of CP-EBPSK with random-polar is demonstrated, and QPSO is utilized to design the digital impacting filter, which also takes the effect of finite word length into consideration when implemented by hardware. Finally, the proposed method is simulated. Simulation results show that the digital impacting filter designed by new method can derive satisfied demodulation performance.
基金Support from the National Natural Science Foundation of China (No. 51476043), the Major National Scientific Instruments and Equipment Development Special Foundation of China (No. 51327803) and the Foundation for Innovative Research Groups of the National Natural Science Foundation of China (No. 51421063) is gratefully acknowledged.
文摘An improved quantum-behaved particle swarm optimization (IQPSO) algorithm is employed to deter- mine aerosol size distribution (ASD). The direct problem is solved using the anomalous diffraction approximation and Lambert-Beer's Law. Compared with the standard particle swarm optimization algo- rithm, the stochastic particle size optimization algorithm and the original QPSO, our IQPSO has faster convergence speed and higher accuracy within a smaller number of generations. Optimization param- eters for the IQPSO were also evaluated; we recommend using four measurement wavelengths and S0 particles. Size distributions of various aerosol types were estimated using the IQPSO under dependent and independent models. Finally, experimental ASDs at different locations in Harbin were recovered using the IQPSO. All our results confirm that the IQpSO algorithm is an effective and reliable technique for estimatinz ASD.
文摘Mapping of three-dimensional network on chip is a key problem in the research of three-dimensional network on chip. The quality of the mapping algorithm used di- rectly affects the communication efficiency between IP cores and plays an important role in the optimization of power consumption and throughput of the whole chip. In this paper, ba- sic concepts and related work of three-dimensional network on chip are introduced. Quantum-behaved particle swarm op- timization algorithm is applied to the mapping problem of three-dimensional network on chip for the first time. Sim- ulation results show that the mapping algorithm based on quantum-behaved particle swarm algorithm has faster con- vergence speed with much better optimization performance compared with the mapping algorithm based on particle swarm algorithm. It also can effectively reduce the power consumption of mapping of three-dimensional network on chip.
基金the Ministry of Science and Technology of Taiwan (Grants MOST 104-2221-E-327019, MOST 105-2221-E-327-014) for financial support of this study
文摘This paper proposes a systematic method, integrating the uniform design (UD) of experiments and quantum-behaved particle swarm optimization (QPSO), to solve the problem of a robust design for a railway vehicle suspension system. Based on the new nonlinear creep model derived from combining Hertz contact theory, Kalker's linear theory and a heuristic nonlinear creep model, the modeling and dynamic analysis of a 24 degree-of-freedom railway vehicle system were investigated. The Lyapunov indirect method was used to examine the effects of suspension parameters, wheel conicities and wheel rolling radii on critical hunting speeds. Generally, the critical hunting speeds of a vehicle system resulting from worn wheels with different wheel rolling radii are lower than those of a vehicle system having original wheels without different wheel rolling radii. Because of worn wheels, the critical hunting speed of a running railway vehicle substantially declines over the long term. For safety reasons, it is necessary to design the suspension system parameters to increase the robustness of the system and decrease the sensitive of wheel noises. By applying UD and QPSO, the nominal-the-best signal-to-noise ratio of the system was increased from -48.17 to -34.05 dB. The rate of improvement was 29.31%. This study has demonstrated that the integration of UD and QPSO can successfully reveal the optimal solution of suspension parameters for solving the robust design problem of a railway vehicle suspension system.
基金The 11th Postgraduate Technology Innovation Project of North University of China(No.20141147)
文摘In order to correct the test error caused by the dynamic characteristics of pressure sensor and avoid the influence of the error of sensor's dynamic model on compensation results,a dynamic compensation method of the pressure sensor is presented,which is based on quantum-behaved particle swarm optimization(QPSO)algorithm and the mean square error(MSE).By using this method,the inverse model of the sensor is built and optimized and then the coefficients of the optimal compensator are got.This method is verified by the dynamic calibration with shock tube and the dynamic characteristics of the sensor before and after compensation are analyzed in time domain and frequency domain.The results show that the working bandwidth of the sensor is extended effectively.This method can reduce dynamic measuring error and improve test accuracy in actual measurement experiments.
基金the Innovation Fund Projects of Cooperation among Industries,Universities&Research Institutes of Jiangsu Province,China(Nos.BY2015019-11,BY2015019-20)National Natural Science Foundation of China(No.51403080)+1 种基金the Fundamental Research Funds for the Central Universities,China(No.JUSRP51404A)the Priority Academic Program Development of Jiangsu Higher Education Institutions,China
文摘An effective method for automatic image inspection of fabric defects is presented. The proposed method relies on a tuned 2D-Gabor filter and quantum-behaved particle swarm optimization( QPSO) algorithm. The proposed method consists of two main steps:( 1) training and( 2) image inspection. In the image training process,the parameters of the 2D-Gabor filters can be tuned by QPSO algorithm to match with the texture features of a defect-free template. In the inspection process, each sample image under inspection is convoluted with the selected optimized Gabor filter.Then a simple thresholding scheme is applied to generating a binary segmented result. The performance of the proposed scheme is evaluated by using a standard fabric defects database from Cotton Incorporated. Good experimental results demonstrate the efficiency of proposed method. To further evaluate the performance of the proposed method,a real time test is performed based on an on-line defect detection system. The real time test results further demonstrate the effectiveness, stability and robustness of the proposed method,which is suitable for industrial production.