期刊文献+

基于量子行为粒子群优化方法的随机规划算法 被引量:3

Empirical study based on Quantum-behaved Particle Swarm Optimization stochastic programming algorithm
下载PDF
导出
摘要 在不断变化的金融市场中,多阶段投资组合优化通过周期性地重组投资对象来追求回报最大,风险最小。提出了使用基于量子化行为的粒子群优化算法(Quantum-behaved Particle Swarm Optimization,QPSO)解决多阶段投资优化问题,并使用经典的利润风险函数作为目标函数,通过算法对标准普尔指数100的不同股票和现金进行投资组合的优化研究。根据实验得出的期望收益率与方差表明,QPSO算法在寻找全局最优解方面要优于粒子群算法(Particle Swarm Optimization,PSO)和遗传算法(Genetic Al-gorithm,GA)。 A multistage stochastic financial optimization manages portfolio in constantly changing financial markets by periodically rebalancing the asset portfolio to achieve return maximization and/or risk minimization.In this paper,we present a decision-making process that uses our proposed Quantum-behaved Particle Swarm Optimization(QPSO) Algorithm to solve multi-stage portfolio optimization problem.The objective function is classical return-variance function.The performance of our algorithm is demonstrated by optimizing the allocation of cash and various stocks in S&P 100 index.Experiments are conducted to compare performance of the portfolios optimized by different objective functions with Particle Swarm Optimization (PSO) algorithm and Genetic Algorithm(GA) in terms of efficient frontiers.
出处 《计算机工程与应用》 CSCD 北大核心 2007年第24期185-188,225,共5页 Computer Engineering and Applications
基金 国家自然科学基金(the National Natural Science Foundation of China under Grant No.60474030)
关键词 随机规划资产分配粒子群量子行为 Multi-objective programming asset allocation Particle Swarm Quantum-behaved
  • 相关文献

参考文献11

  • 1Carino D R,Ziemba W T.Formulation of the russell-yasuda kasai financial planning model.Frank Russell Company,Tacoma,WA,June 1995. 被引量:1
  • 2Chan M C.Genetic algorithms in multi-stage asset allocation system[C]//Pro 2002 IEEE International Conference on Systems,Man and C yberneti cs,Piscataway,NJ,2002,3:316-321. 被引量:1
  • 3Clerc M,Kennedy J.The particle swarm:explosion,stability,and convergence in a multi-dimensional complex space[J].IEEE Transactions on Evolutionary Computation,2002,6(1):58-73. 被引量:1
  • 4Kennedy J,Eberhart R C.Particle Swarm Optimization[C]//Proc 1995 IEEE International Conference on Neural Networks.Piscataway,NJ,1995:1942-1948. 被引量:1
  • 5Mulvey J M,Vladimirou H.Stochastic network optimization Models for inverstment planning[J].Annals of Operation Research,1995,43:477-490. 被引量:1
  • 6Mulvey J M,Rosenbaum D P.Shetty Bala:strategic financial risk management and operations research[J].European Journal of Operational Research,1997:1-16. 被引量:1
  • 7Mulvey J M,Rosenbaum D P,Shetty B.Parameter estimation in stochastic scenario generation system[J].European Journal of Operations Research,1999,118:563-577. 被引量:1
  • 8Sun J,Feng B,Xu W B.Particle Swarm Optimization with particles having quantum behavior[C]//Proc 2004 Congress on Evolutionary Computation,Piscataway,NJ,2004:325-331. 被引量:1
  • 9Sun J,Xu W B,Feng B.A global search strategy of Quantum-behaved Particle Swarm Optimization[C]//Proc 2004 IEEE Conference on Cybernetics and Intelligent Systems,Singapore,2004:111-115. 被引量:1
  • 10Sun J,Xu W B,Feng B.Adaptive parameter control for quantumbehaved Particle Swarm Optimization on Individual Level[C]//Proceedings of 2005 IEEE International Conference on Systems,Man and Cybernetics,Piscataway NJ,2005:3049-3054. 被引量:1

同被引文献56

引证文献3

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部