In recent years,fast economic development demands for more land use and thus many reclamation projects are initiated around the Sanmen Bay,Zhejiang,SE China in the East China Sea,for which tidal and storm surge levels...In recent years,fast economic development demands for more land use and thus many reclamation projects are initiated around the Sanmen Bay,Zhejiang,SE China in the East China Sea,for which tidal and storm surge levels are reassessed.A two-dimensional numerical model based on an advanced circulation model(ADCIRC)was applied to evaluate the impact of reclamation projects on tidal and storm surge levels in the bay.The results show that the shoreline relocation and topographic change had opposite effects on tidal heights.Shoreline relocation decreased the tidal amplitude,while siltation caused topographic change and increased the amplitude.Such variations of the amplitude were significant in the top areas of Sanmen Bay.Three types of typhoon paths were selected for a case study to investigate the impacts of shoreline relocation and topographic change on storm surge level.Results show that the maximum increase in storm surge level due to shoreline relocation was less than 0.06 m.The rise of peak surge level due to the change of topography was significant and the peak surge level rose when siltation increased.The maximum surge level rise occurred in the path of northwest landing typhoons,which exceeded 0.24 m at the top of the bay.The rise in peak surge level can potentially lead to severe damages and losses in Sanmen Bay and more attention needs to be paid to this problem of shoreline change in the future.展开更多
We demonstrate here that global-scale determination of a key ionospheric parameter,the peak height of the F_(2)region(h_(m)F_(2)),can be obtained by making a simple ratio measurement of the atomic oxygen 130.4 and 135...We demonstrate here that global-scale determination of a key ionospheric parameter,the peak height of the F_(2)region(h_(m)F_(2)),can be obtained by making a simple ratio measurement of the atomic oxygen 130.4 and 135.6 nm emissions in the far-ultraviolet nightglow with a nadir-viewing system such as a pair of photometers suitable for flight on a CubeSat.We further demonstrate that measurements from an altitude that is within the typical range of nighttime h_(m)F_(2)250−450 km can provide the ratios that are needed for retrieval of the h_(m)F_(2).Our study is conducted mostly through numerical simulations by using radiative transfer models of the two emissions coupled with empirical models of the atmosphere and ionosphere.Modeling results show that the relationship between the h_(m)F_(2)and the intensity ratio is sensitive to the altitude from which the emissions are observed,primarily because of the distinctly different degrees of resonant scattering of the two emissions in the atmosphere.A roughly quadratic relationship can be established for observations from an orbit of~400 km,which enables h_(m)F_(2)retrieval.Parametric analysis indicates that the relationship can be affected by the ambient atmospheric conditions through resonant scattering and O2 absorption.For typical nighttime conditions with h_(m)F_(2)250−450 km,retrieval of the h_(m)F_(2)from synthetic observations shows that the typical errors are only a few kilometers(up to~20 km),depending on the accuracy of the ambient conditions predicted by the empirical models.Our findings pave the way for use of the 130.4/135.6 nm intensity ratios for global-scale monitoring of the nighttime ionosphere at mid to low latitudes.展开更多
The popular methods to estimate wave height with high-frequency(HF) radar depend on the integration over the second-order spectral region and thus may come under from even not strong external interference. To improv...The popular methods to estimate wave height with high-frequency(HF) radar depend on the integration over the second-order spectral region and thus may come under from even not strong external interference. To improve the accuracy and increase the valid detection range of the wave height measurement, particularly by the smallaperture radar, it is turned to singular peaks which often exceed the power of other frequency components. The power of three kinds of singular peaks, i.e., those around ±1,±√2 and ±1√2 times the Bragg frequency, are retrieved from a one-month-long radar data set collected by an ocean state monitoring and analyzing radar,model S(OSMAR-S), and in situ buoy records are used to make some comparisons. The power response to a wave height is found to be described with a new model quite well, by which obvious improvement on the wave height estimation is achieved. With the buoy measurements as reference, a correlation coefficient is increased to 0.90 and a root mean square error(RMSE) is decreased to 0.35 m at the range of 7.5 km compared with the results by the second-order method. The further analysis of the fitting performance across range suggests that the peak has the best fit and maintains a good performance as far as 40 km. The correlation coefficient is 0.78 and the RMSE is 0.62 m at 40 km. These results show the effectiveness of the new empirical method, which opens a new way for the wave height estimation with the HF radar.展开更多
The analysis and design of offshore structures necessitates the consideration of wave loads. Realistic modeling of wave loads is particularly important to ensure reliable performance of these structures. Among the ava...The analysis and design of offshore structures necessitates the consideration of wave loads. Realistic modeling of wave loads is particularly important to ensure reliable performance of these structures. Among the available methods for the modeling of the extreme significant wave height on a statistical basis, the peak over threshold method has attracted most attention. This method employs Poisson process to character- ize time-varying properties in the parameters of an extreme value distribution. In this paper, the peak over threshold method is reviewed and extended to account for subjectivity in the modeling. The freedom in selecting the threshold and the time span to separate extremes from the original time series data is incorpo- rated as imprecision in the model. This leads to an extension from random variables to random sets in the probabilistic model for the extreme significant wave height. The extended model is also applied to different periods of the sampled data to evaluate the significance of the climatic conditions on the uncertainties of the parameters.展开更多
基金Supported by the National Key Research and Development Program of China(Nos.2016YFC1402000,2018YFB1501901-03)the National Natural Science Foundation of China(No.41776016)the Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDA19060202)
文摘In recent years,fast economic development demands for more land use and thus many reclamation projects are initiated around the Sanmen Bay,Zhejiang,SE China in the East China Sea,for which tidal and storm surge levels are reassessed.A two-dimensional numerical model based on an advanced circulation model(ADCIRC)was applied to evaluate the impact of reclamation projects on tidal and storm surge levels in the bay.The results show that the shoreline relocation and topographic change had opposite effects on tidal heights.Shoreline relocation decreased the tidal amplitude,while siltation caused topographic change and increased the amplitude.Such variations of the amplitude were significant in the top areas of Sanmen Bay.Three types of typhoon paths were selected for a case study to investigate the impacts of shoreline relocation and topographic change on storm surge level.Results show that the maximum increase in storm surge level due to shoreline relocation was less than 0.06 m.The rise of peak surge level due to the change of topography was significant and the peak surge level rose when siltation increased.The maximum surge level rise occurred in the path of northwest landing typhoons,which exceeded 0.24 m at the top of the bay.The rise in peak surge level can potentially lead to severe damages and losses in Sanmen Bay and more attention needs to be paid to this problem of shoreline change in the future.
基金the National Natural Science Foundation of China through Grant 8206100245the Chinese Meteorological Administration through Grant FY-APP-ZX-2022.0222.
文摘We demonstrate here that global-scale determination of a key ionospheric parameter,the peak height of the F_(2)region(h_(m)F_(2)),can be obtained by making a simple ratio measurement of the atomic oxygen 130.4 and 135.6 nm emissions in the far-ultraviolet nightglow with a nadir-viewing system such as a pair of photometers suitable for flight on a CubeSat.We further demonstrate that measurements from an altitude that is within the typical range of nighttime h_(m)F_(2)250−450 km can provide the ratios that are needed for retrieval of the h_(m)F_(2).Our study is conducted mostly through numerical simulations by using radiative transfer models of the two emissions coupled with empirical models of the atmosphere and ionosphere.Modeling results show that the relationship between the h_(m)F_(2)and the intensity ratio is sensitive to the altitude from which the emissions are observed,primarily because of the distinctly different degrees of resonant scattering of the two emissions in the atmosphere.A roughly quadratic relationship can be established for observations from an orbit of~400 km,which enables h_(m)F_(2)retrieval.Parametric analysis indicates that the relationship can be affected by the ambient atmospheric conditions through resonant scattering and O2 absorption.For typical nighttime conditions with h_(m)F_(2)250−450 km,retrieval of the h_(m)F_(2)from synthetic observations shows that the typical errors are only a few kilometers(up to~20 km),depending on the accuracy of the ambient conditions predicted by the empirical models.Our findings pave the way for use of the 130.4/135.6 nm intensity ratios for global-scale monitoring of the nighttime ionosphere at mid to low latitudes.
基金The National Natural Science Foundation of China under contract No.61371198the National Special Program for Key Scientific Instrument and Equipment Development of China under contract No.2013YQ160793
文摘The popular methods to estimate wave height with high-frequency(HF) radar depend on the integration over the second-order spectral region and thus may come under from even not strong external interference. To improve the accuracy and increase the valid detection range of the wave height measurement, particularly by the smallaperture radar, it is turned to singular peaks which often exceed the power of other frequency components. The power of three kinds of singular peaks, i.e., those around ±1,±√2 and ±1√2 times the Bragg frequency, are retrieved from a one-month-long radar data set collected by an ocean state monitoring and analyzing radar,model S(OSMAR-S), and in situ buoy records are used to make some comparisons. The power response to a wave height is found to be described with a new model quite well, by which obvious improvement on the wave height estimation is achieved. With the buoy measurements as reference, a correlation coefficient is increased to 0.90 and a root mean square error(RMSE) is decreased to 0.35 m at the range of 7.5 km compared with the results by the second-order method. The further analysis of the fitting performance across range suggests that the peak has the best fit and maintains a good performance as far as 40 km. The correlation coefficient is 0.78 and the RMSE is 0.62 m at 40 km. These results show the effectiveness of the new empirical method, which opens a new way for the wave height estimation with the HF radar.
基金The Singapore Ministry of Education AcRF Project under contract NTU ref:RF20/10
文摘The analysis and design of offshore structures necessitates the consideration of wave loads. Realistic modeling of wave loads is particularly important to ensure reliable performance of these structures. Among the available methods for the modeling of the extreme significant wave height on a statistical basis, the peak over threshold method has attracted most attention. This method employs Poisson process to character- ize time-varying properties in the parameters of an extreme value distribution. In this paper, the peak over threshold method is reviewed and extended to account for subjectivity in the modeling. The freedom in selecting the threshold and the time span to separate extremes from the original time series data is incorpo- rated as imprecision in the model. This leads to an extension from random variables to random sets in the probabilistic model for the extreme significant wave height. The extended model is also applied to different periods of the sampled data to evaluate the significance of the climatic conditions on the uncertainties of the parameters.