After the (1 + 1)-dimensional nonlinear Schrodinger equation is embedded in higher dimensions and the usual singularity analysis approach is extended such that all the Painleve expansion coefficients are conformal inv...After the (1 + 1)-dimensional nonlinear Schrodinger equation is embedded in higher dimensions and the usual singularity analysis approach is extended such that all the Painleve expansion coefficients are conformal invariant, many higher dimensional integrable models are got after the nontrivial conformal invariant expansion coefficients are taken to be zero simply. The Painleve properties of the obtained higher dimensional models (including some (3 + 1)-dimensional models) are proved.展开更多
This article is a review and promotion of the study of solutions of differential equations in the “neighborhood of infinity” via a non traditional compactification. We define and compute critical points at infinity ...This article is a review and promotion of the study of solutions of differential equations in the “neighborhood of infinity” via a non traditional compactification. We define and compute critical points at infinity of polynomial autonomuos differential systems and develop an explicit formula for the leading asymptotic term of diverging solutions to critical points at infinity. Applications to problems of completeness and incompleteness (the existence and nonexistence respectively of global solutions) of dynamical systems are provided. In particular a quadratic competing species model and the Lorentz equations are being used as arenas where our technique is applied. The study is also relevant to the Painlevé property and to questions of integrability of dynamical systems.展开更多
By Painleve analysis, traveling wave speed and solution of reaction-diffusion equations for the concentration of one species in one spatial dimension are in detail investigated. When the exponent of the creation term ...By Painleve analysis, traveling wave speed and solution of reaction-diffusion equations for the concentration of one species in one spatial dimension are in detail investigated. When the exponent of the creation term is larger than the one of the annihilation term, two typical cases are studied, one with the exact traveling wave solutions, yielding the values of speeds, the other with the series expansion solution, also yielding the value of speed. Conversely, when the exponent of creation term is smaller than the one of the annihilation term, two typical cases are also studied, but only for one of them, there is a series development solution, yielding the value of speed, and for the other, traveling wave solution cannot exist. Besides, the formula of calculating speeds and solutions of planar wave within the thin boundary layer are given for a class of typical excitable media.展开更多
A reaction diffusion system arising in the theory of superconductivity is considered and its m any kinds of analytic solutions are constructed by the Painleve′analysis and sim ilarity reduction m ethods.
This paper mainly discusses the(2+1)-dimensional modified dispersive water-wave(MDWW) system which will be proved nonlinear self-adjointness. This property is applied to construct conservation laws corresponding to th...This paper mainly discusses the(2+1)-dimensional modified dispersive water-wave(MDWW) system which will be proved nonlinear self-adjointness. This property is applied to construct conservation laws corresponding to the symmetries of the system. Moreover, via the truncated Painlev′e analysis and consistent tanh-function expansion(CTE)method, the soliton-cnoidal periodic wave interaction solutions and corresponding images will be eventually achieved.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant No. 19975025) National "Climbing Project", Natural Science Foundation of Zhejiang Province Youth Foundation of Zhejiang Province
文摘After the (1 + 1)-dimensional nonlinear Schrodinger equation is embedded in higher dimensions and the usual singularity analysis approach is extended such that all the Painleve expansion coefficients are conformal invariant, many higher dimensional integrable models are got after the nontrivial conformal invariant expansion coefficients are taken to be zero simply. The Painleve properties of the obtained higher dimensional models (including some (3 + 1)-dimensional models) are proved.
文摘This article is a review and promotion of the study of solutions of differential equations in the “neighborhood of infinity” via a non traditional compactification. We define and compute critical points at infinity of polynomial autonomuos differential systems and develop an explicit formula for the leading asymptotic term of diverging solutions to critical points at infinity. Applications to problems of completeness and incompleteness (the existence and nonexistence respectively of global solutions) of dynamical systems are provided. In particular a quadratic competing species model and the Lorentz equations are being used as arenas where our technique is applied. The study is also relevant to the Painlevé property and to questions of integrability of dynamical systems.
文摘By Painleve analysis, traveling wave speed and solution of reaction-diffusion equations for the concentration of one species in one spatial dimension are in detail investigated. When the exponent of the creation term is larger than the one of the annihilation term, two typical cases are studied, one with the exact traveling wave solutions, yielding the values of speeds, the other with the series expansion solution, also yielding the value of speed. Conversely, when the exponent of creation term is smaller than the one of the annihilation term, two typical cases are also studied, but only for one of them, there is a series development solution, yielding the value of speed, and for the other, traveling wave solution cannot exist. Besides, the formula of calculating speeds and solutions of planar wave within the thin boundary layer are given for a class of typical excitable media.
基金Supported by the National Natural Science Foundation of China under Grant 61072145the Scientific Research Project of Beijing Educational Committee(SQKM201211232016)Beijing Excellent Talent Training Project(2013D005007000003)
文摘A reaction diffusion system arising in the theory of superconductivity is considered and its m any kinds of analytic solutions are constructed by the Painleve′analysis and sim ilarity reduction m ethods.
基金Supported by National Natural Science Foundation of China under Grant Nos.11371293,11505090the Natural Science Foundation of Shaanxi Province under Grant No.2014JM2-1009+1 种基金Research Award Foundation for Outstanding Young Scientists of Shandong Province under Grant No.BS2015SF009the Science and Technology Innovation Foundation of Xi’an under Grant No.CYX1531WL41
文摘This paper mainly discusses the(2+1)-dimensional modified dispersive water-wave(MDWW) system which will be proved nonlinear self-adjointness. This property is applied to construct conservation laws corresponding to the symmetries of the system. Moreover, via the truncated Painlev′e analysis and consistent tanh-function expansion(CTE)method, the soliton-cnoidal periodic wave interaction solutions and corresponding images will be eventually achieved.