期刊文献+

Painlevé方法构造Hirota-Satsuma方程组的精确解 被引量:1

Exact Solution of Hirota-Satsuma Equations by Constructing Painlevé Method
下载PDF
导出
摘要 用Painlevé分析的WTC方法求解非线性偏微分方程组,当选择同一个奇异流形时,此方法在方程组中的运用得以实现.首先对Hirota-Satsuma方程组进行Painlevé分析,确定Painlevé展开式,确定共振点,验证共振点,再到相容性分析,得到方程的Painlevé性质,对方程进行对称分析,最后借助于Backlund变换得到方程组的精确解. This paper uses the WTC method of Painlev analysis to solve the nonlinear partial differential equations, and the application of this method in the equations can be realized when the same singular manifold is chosen. First of all, the Hirota-Satsuma equation group is analyzed by Painlev to determine the open mode of Painlev and the resonance point to be verified. Then, the compatibility analysis is taken to obtain the Painlev property of the equation, with the symmetry of the equation analyzed. Finally, the exact solution of the equations is obtained by means of transform.
作者 唐晓苓 刘汉泽 TANG Xiao-ling;LIU Han-ze(School of Mathematical Sciences,Liaocheng University,Liaocheng Shandong 252059,China)
出处 《菏泽学院学报》 2018年第5期1-5,共5页 Journal of Heze University
基金 国家自然科学基金项目(11171041)
关键词 PAINLEVE分析 Bacldhnd变换 Hirota-Satsuma方程组 精确解 Painleve-Analysis Backlund-Conversion Hirota-Satsuma equations exact solution
  • 相关文献

参考文献6

二级参考文献32

  • 1周钰谦,刘倩,张健.一类非线形波动方程的精确孤立波解[J].四川师范大学学报(自然科学版),2005,28(2):165-167. 被引量:13
  • 2周钰谦,张健,刘倩.耦合Klein-Gordon-Schrdinger方程显示解的统一构造[J].四川师范大学学报(自然科学版),2006,29(2):166-170. 被引量:6
  • 3Lei Y.Exact solution of nonlinear equation[J].Phys Lett,1999,A260:55-59. 被引量:1
  • 4Shang Y D.Transformation,lax pairs and explicit exact solution for the shallow water waves equation[J].Appl Math Comput,2007,187:1286-1297. 被引量:1
  • 5Clarkson P A,Kruskal M D.New similarity reductions of the Boussinesq equation[J].Math Phys,1989,30(3):2201-2213. 被引量:1
  • 6Parkes E J,Duffy B R.Traveling solitary wave solution to a compound KdV-Burgers equation[J].Phys Lett,1997,A229:217-220. 被引量:1
  • 7Fan E G.Two new application of the homogeneous balance method[J].Phys Lett,2000,A265:353-357. 被引量:1
  • 8Wang M L,Li X Z,Zhang J L.The expansion method and traveling wave solution of nonlinear evolution equation in mathematical physics[J].Phys Lett,2008,A372:417-423. 被引量:1
  • 9Guo S M,Zhou Y B.The extended expansion method and its applications to the Whitham-Broer-Kaup-Like equations and coupled Hirota-Satsuma KdV equations[J].Appl Math Comput,2010,215:3214-3221. 被引量:1
  • 10Ismail A.Exact and explicit solution to some nonlinear evolution equation by utilizing the expansion method[J].Appl Math Comput,2009,215:857-863. 被引量:1

共引文献77

同被引文献9

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部