Two-dimensional (2D) materials have attracted substantial attention in electronic and optoelectronic applications with the superior advantages of being flexible, transparent, and highly tunable. Gapless graphene exh...Two-dimensional (2D) materials have attracted substantial attention in electronic and optoelectronic applications with the superior advantages of being flexible, transparent, and highly tunable. Gapless graphene exhibits ultra-broadband and fast photoresponse while the 2D semiconducting MoS2 and GaTe exhibit high sensitivity and tunable responsivity to visible light. However, the device yield and repeatability call for further improvement to achieve large-scale uniformity. Here, we report a layer-by-layer growth of wafer-scale GaTe with a high hole mobility of 28.4 cm^2/(V.s) by molecular beam epitaxy. The arrayed p-n )unctions were developed by growing few-layer GaTe directly on fhree-inch Si wafers. The resultant diodes reveal good rectifying characteristics and a high photovoltaic external quantum efficiency up to 62% at 4.8 μW under zero bias. The photocurrent reaches saturation fast enough to capture a time constant of 22 μs and shows no sign of device degradation after 1.37 million cycles of operation. Most strikingly, such high performance has been achieved across the entire wafer, making the volume production of devices accessible. Finally, several photoimages were acquired by the GaTe/Si photodiodes with reasonable contrast and spatial resolution, demonstrating the potential of integrating the 2D materials with silicon technology for novel optoelectronic devices.展开更多
The mixed-dimensional van der Waals (vdW) heterostructure is a promising building block for strained electronics and optoelectronics because it avoids the bond fracture and atomic reconstruction under strain. We pro...The mixed-dimensional van der Waals (vdW) heterostructure is a promising building block for strained electronics and optoelectronics because it avoids the bond fracture and atomic reconstruction under strain. We propose a novel mixed-dimensional vdW heterostructure between two-dimensional graphene and a one-dimensional ZnO nanowire for high-performance photosensing. By utilizing the piezoelectric properties of ZnO, strain modulation was accomplished in the mixed-dimensional vdW heterostructure to optimize the device performance. By combining the ultrahigh electrons transfer speed in graphene and the extremely long life time of holes in ZnO, an outstanding responsivity of 1.87 ×10^5 A/W was achieved. Under a tensile strain of only 0.44% on the ZnO nanowire, the responsivity was enhanced by 26%. A competitive model was proposed, in which the performance enhancement is due to the efficient promotion of the injection of photogenerated electrons from the ZnO into the graphene caused by the strain-induced positive piezopotential. Our study provides a strain-engineering strategy for controlling the behavior of the photocarriers in the mixed-dimensional vdW heterostructure, which can be also applied to other similar systems in the future.展开更多
High-performance solar-blind UV (ultraviolet) photodetectors (PDs) based on low-dimension semiconducting nanostructures with high sensitivity, excellent cycle stability, and the ability to operate in harsh environ...High-performance solar-blind UV (ultraviolet) photodetectors (PDs) based on low-dimension semiconducting nanostructures with high sensitivity, excellent cycle stability, and the ability to operate in harsh environments are critical for solar observations, space communication, UV astronomy, and missile tracking. In this study, TiO2-ZnTiO3 heterojunction nanowire-based PDs are successfully developed and used to detect solar-blind UV light. A photoconductive analysis indicates that the fabricated PDs are sensitive to UV illumination, with high sensitivity, good stability, and high reproducibility. Further analysis indicates that the rich existence of grain boundaries within the TiO2-ZnTiO3 nanowire can greatly decrease the dark current and recombination of the electron-hole pairs and thereby significantly increase the device's photosensitivity, spectra responsivity (1.1 ~ 106), and external quantum efficiency (4.3 ~ 108 %). Moreover, the PDs exhibit good photodetective performance with fast photoresponse and recovery and excellent thermal stability at temperatures as high as 175 ℃. According to these results, TiO2-ZnTiO3 heterojunction nanowires exhibit great potential for applications in high-performance optical electronics and PDs, particularly next-generation photodetectors with the ability to operate in harsh environments.展开更多
基金This work was supported by the National Young 1000 Talent Plan, Pujiang Talent Plan in Shanghai, National Natural Science Foundation of China (Nos. 61322407, 11474058, and 11322441), the Chinese Na- tional Science Fund for Talent Training in Basic Science (No. J1103204), and Ten Thousand Talents Program for young talents. Part of the sample fabrication was performed at Fudan Nano-fabrication Laboratory. We acknowledge Yuanbo Zhang, Yizheng Wu, Zuimin Jiang, Likai Li, Boliang Chen for great assistance during the device fabrication and measurements.
文摘Two-dimensional (2D) materials have attracted substantial attention in electronic and optoelectronic applications with the superior advantages of being flexible, transparent, and highly tunable. Gapless graphene exhibits ultra-broadband and fast photoresponse while the 2D semiconducting MoS2 and GaTe exhibit high sensitivity and tunable responsivity to visible light. However, the device yield and repeatability call for further improvement to achieve large-scale uniformity. Here, we report a layer-by-layer growth of wafer-scale GaTe with a high hole mobility of 28.4 cm^2/(V.s) by molecular beam epitaxy. The arrayed p-n )unctions were developed by growing few-layer GaTe directly on fhree-inch Si wafers. The resultant diodes reveal good rectifying characteristics and a high photovoltaic external quantum efficiency up to 62% at 4.8 μW under zero bias. The photocurrent reaches saturation fast enough to capture a time constant of 22 μs and shows no sign of device degradation after 1.37 million cycles of operation. Most strikingly, such high performance has been achieved across the entire wafer, making the volume production of devices accessible. Finally, several photoimages were acquired by the GaTe/Si photodiodes with reasonable contrast and spatial resolution, demonstrating the potential of integrating the 2D materials with silicon technology for novel optoelectronic devices.
基金Acknowledgements This work was supported by the National Basic Research Program of China (No. 2013CB932602), the National Key Research and Development Program of China (No. 2016YFA0202701), the Program of Introducing Talents of Discipline to Universities (No. B14003), National Natural Science Foundation of China (Nos. 51672026, 51602020, 51527802, and 51232001), China Postdoctoral Science Foundation (Nos. 2015M580981 and 2016T90033), Beijing Municipal Science & Technology Commission, and the State Key Laboratory for Advanced Metals and Materials (No. 2016Z-06), and the Fundamental Research Funds for the Central Universities (Nos. FRF-TP-15-075A1, FRF-BR-15-036A, and FRF-AS-15-002).
文摘The mixed-dimensional van der Waals (vdW) heterostructure is a promising building block for strained electronics and optoelectronics because it avoids the bond fracture and atomic reconstruction under strain. We propose a novel mixed-dimensional vdW heterostructure between two-dimensional graphene and a one-dimensional ZnO nanowire for high-performance photosensing. By utilizing the piezoelectric properties of ZnO, strain modulation was accomplished in the mixed-dimensional vdW heterostructure to optimize the device performance. By combining the ultrahigh electrons transfer speed in graphene and the extremely long life time of holes in ZnO, an outstanding responsivity of 1.87 ×10^5 A/W was achieved. Under a tensile strain of only 0.44% on the ZnO nanowire, the responsivity was enhanced by 26%. A competitive model was proposed, in which the performance enhancement is due to the efficient promotion of the injection of photogenerated electrons from the ZnO into the graphene caused by the strain-induced positive piezopotential. Our study provides a strain-engineering strategy for controlling the behavior of the photocarriers in the mixed-dimensional vdW heterostructure, which can be also applied to other similar systems in the future.
文摘High-performance solar-blind UV (ultraviolet) photodetectors (PDs) based on low-dimension semiconducting nanostructures with high sensitivity, excellent cycle stability, and the ability to operate in harsh environments are critical for solar observations, space communication, UV astronomy, and missile tracking. In this study, TiO2-ZnTiO3 heterojunction nanowire-based PDs are successfully developed and used to detect solar-blind UV light. A photoconductive analysis indicates that the fabricated PDs are sensitive to UV illumination, with high sensitivity, good stability, and high reproducibility. Further analysis indicates that the rich existence of grain boundaries within the TiO2-ZnTiO3 nanowire can greatly decrease the dark current and recombination of the electron-hole pairs and thereby significantly increase the device's photosensitivity, spectra responsivity (1.1 ~ 106), and external quantum efficiency (4.3 ~ 108 %). Moreover, the PDs exhibit good photodetective performance with fast photoresponse and recovery and excellent thermal stability at temperatures as high as 175 ℃. According to these results, TiO2-ZnTiO3 heterojunction nanowires exhibit great potential for applications in high-performance optical electronics and PDs, particularly next-generation photodetectors with the ability to operate in harsh environments.