In this paper we get the sharp estimates of the p-adic Hardy and Hard^Littlewood-Pdlya operators on L^q (|x|apdx). Also, we prove that the commutators generated by the p-adic Hardy operators (Hardy-Littlewood-Pdl...In this paper we get the sharp estimates of the p-adic Hardy and Hard^Littlewood-Pdlya operators on L^q (|x|apdx). Also, we prove that the commutators generated by the p-adic Hardy operators (Hardy-Littlewood-Pdlya operators) and the central BMO functions are bounded on L^q (|x|apdx), more generally, on Herz spaces.展开更多
In this paper,we introduce the weighted multilinear p-adic Hardy operator and weighted multilinear p-adic Ces`aro operator,we also obtain the boundedness of these two operators on the product of p-adic Herz spaces and...In this paper,we introduce the weighted multilinear p-adic Hardy operator and weighted multilinear p-adic Ces`aro operator,we also obtain the boundedness of these two operators on the product of p-adic Herz spaces and p-adic Morrey-Herz spaces,the corresponding operator norms are also established in each case.Moreover,the boundedness of commutators of these two operators with symbols in central bounded mean oscillation spaces and Lipschitz spaces on p-adic Morrey-Herz spaces are also given.展开更多
This paper unfolds and reviews the theory of abstract algebra, field extensions and discusses various kinds of field extensions. Field extensions are said to be algebraic or transcendental. We pay much attention to al...This paper unfolds and reviews the theory of abstract algebra, field extensions and discusses various kinds of field extensions. Field extensions are said to be algebraic or transcendental. We pay much attention to algebraic extensions. Finally, we construct finite extensions of Q and finite extensions of the function field over finite field F<sub>p </sub>using the notion of field completion, analogous to field extensions. With the study of field extensions, considering any polynomial with coefficients in the field, we can find the roots of the polynomial, and with the notion of algebraically closed fields, we have one field, F, where we can find the roots of any polynomial with coefficients in F.展开更多
We generalize the congruences of Friedmann-Tamarkine (1909), Lehmer (1938), and Ernvall-Metsänkyla (1991) on the sums of powers of integers weighted by powers of the Fermat quotients to the next Fermat quotient p...We generalize the congruences of Friedmann-Tamarkine (1909), Lehmer (1938), and Ernvall-Metsänkyla (1991) on the sums of powers of integers weighted by powers of the Fermat quotients to the next Fermat quotient power, namely to the third power of the Fermat quotient. Using this result and the Gessel identity (2005) combined with our past work (2021), we are able to relate residues of some truncated convolutions of Bernoulli numbers with some Ernvall-Metsänkyla residues to residues of some full convolutions of the same kind. We also establish some congruences concerning other related weighted sums of powers of integers when these sums are weighted by some analogs of the Teichmüller characters.展开更多
In this paper we introduce a cryptosystem based on the quotient groups of the group of rational points of an elliptic curve defined over p-adic number field. Some additional parameters are taken in this system, which ...In this paper we introduce a cryptosystem based on the quotient groups of the group of rational points of an elliptic curve defined over p-adic number field. Some additional parameters are taken in this system, which have an advantage in performing point multiplication while keeping the security of ECC over finite fields. We give a method to select generators of the cryptographic groups, and give a way to represent the elements of the quotient groups with finitely bounded storage by establishing a bijection between these elements and their approximate coordinates. The addition formula under this representation is also presented.展开更多
Suppose that Ip^α is the p-adic Riesz potential. In this paper, we established the boundedness of Ip^α on the p-adic generalized Morrey spaces, as well as the boundedness of the commutators generated by the p-adic R...Suppose that Ip^α is the p-adic Riesz potential. In this paper, we established the boundedness of Ip^α on the p-adic generalized Morrey spaces, as well as the boundedness of the commutators generated by the p-adic Riesz potential Ip^α and p-adic generalized Campanato functions. Keywords展开更多
Let K be a cyclic quartic number field, and k its quadratic subfield. Let h(L) denote theideal class number of field L. Ten congruenees for h^- = h(K)/h(k) are obtained. In par-ticular, if K = Q((p+s(p^(1/2))))^(1/2) ...Let K be a cyclic quartic number field, and k its quadratic subfield. Let h(L) denote theideal class number of field L. Ten congruenees for h^- = h(K)/h(k) are obtained. In par-ticular, if K = Q((p+s(p^(1/2))))^(1/2) with the prime number p = r^2+s^2 and s is even, then C_1h^-≡B_((p-1)/_4)B_(3(p-1)/4) (mod p) for p≡1 (mod 8); and C_2h^-≡E_((p-5)/8)E_((3p-7)/8)(mod p) for p≡5 (mod 8)where B_n and E_n are the Bernoulli and the Euler numbers. If the real K = Q((v(5+2(5^(1/2))))^(1/2),then C_3h^-≡h(Q((-v)^(1/2))) h (Q((-5v)^(1/2))) (mod 5). If 3 ramifies in K = Q(θ^(1/2)), then C_4h(K)≡h(K~*) (mod 3) with K~* = Q((-3θ^(1/2))). All the above C_i are explicitly given constants.Some relations between the factors of class numbers h^- are also obtained. These results forcyclic quartic fields are an extension of the results for quadratic fields obtained by Ankeny-Artin-Chowla, Kiselev, Carlitz and Lu Hong-wen from 1948 to 1983.展开更多
We prove all integral points of the elliptic curve y^2=x^2-30x+133 are (x,y) = (-7,0),(-3,±14),(2, ±9),(6,±13), (5143326,±11664498677), by using the method of algebraic number theory a...We prove all integral points of the elliptic curve y^2=x^2-30x+133 are (x,y) = (-7,0),(-3,±14),(2, ±9),(6,±13), (5143326,±11664498677), by using the method of algebraic number theory and p-adic analysis. Furthermore, we develop a computation method to find all integral points on a class of elliptic curve y^2= (x+α)(x^2-α)(x^2-αx+b) ,α ,b∈Z,α^2〈4b and find all integer solutions of hyperelliptic Diophantine equation Dy^2=Ax^4 + Bx^2 +C,B^2〈4AC.展开更多
We propose a new theory of probability based on the general principle of the statistical stabilization of relative frequencies. According to this principle it is possible to consider the statistical stabilization not ...We propose a new theory of probability based on the general principle of the statistical stabilization of relative frequencies. According to this principle it is possible to consider the statistical stabilization not only with respect to the standard real topology on the field of rational numbers Q but also with respect to an arbitrary topology on Q. The case of p-adic (and more general non-Archimedean) topologies is the most important. Our frequency theory of Probability is a fruitful extension of the frequency theory of R. von Mises[18]. It's well known that the axiomatic theory of Kolmogorov uses the frequency theory as one of the foundations. And a new general frequency theory can be considered as the base for the general axiomatic theory of probability (Kolmogorov's theory is a particular case of this theory which corresponds to the real topology of the statistical stabilization on Q). The situation in the theory of probability becomes similar to that in modern geometry. The Kolmogorov axiomatics (as the Euclidean) is only one of the possibilities, and we have generated a great number of different non-Kolmogorov theories of probability.The applications to p-adic quantum mechanics and field theory are considered.展开更多
In this note, we introduce and study a p-adic Hilbert-type integral operator and obtain its sharp norm estimate. As applications, we establish a p-adic Hilbert-type inequality with the best constant and its equivalent...In this note, we introduce and study a p-adic Hilbert-type integral operator and obtain its sharp norm estimate. As applications, we establish a p-adic Hilbert-type inequality with the best constant and its equivalent form.展开更多
Let p be an odd prime and let n ≥1, k ≥0 and r be integers. Denote by B_k the kth Bernoulli number. It is proved that (i) If r ≥1 is odd and suppose p ≥r + 4, then (ii)If r ≥2 is even and suppose p ≥ r + 3, then...Let p be an odd prime and let n ≥1, k ≥0 and r be integers. Denote by B_k the kth Bernoulli number. It is proved that (i) If r ≥1 is odd and suppose p ≥r + 4, then (ii)If r ≥2 is even and suppose p ≥ r + 3, then (modp^2). (iii)-(2n+1)p (modp^2). This result generalizes the Glaisher’s congruence. As a corollary, a generalization of the Wolstenholme’s theorem is obtained.展开更多
We introduce the p-adic weighted multilinear Hardy-Cesaro operator. We also obtain the necessary and sufficient conditions on weight functions to ensure the boundedness of that operator on the product of Lebesgue spac...We introduce the p-adic weighted multilinear Hardy-Cesaro operator. We also obtain the necessary and sufficient conditions on weight functions to ensure the boundedness of that operator on the product of Lebesgue spaces, Morrey spaces, and central bounded mean oscillation spaces. In each case, we obtain the corresponding operator norms. We also characterize the good weights for the boundedness of the commutator of weighted multilinear Hardy-Cesaro operator on the product of central Morrey spaces with symbols in central bounded mean oscillation spaces.展开更多
The convergence of linear fractional transformations is an important topic in mathematics.We study the pointwise convergence of p-adic Mbius maps,and classify the possibilities of limits of pointwise convergent sequen...The convergence of linear fractional transformations is an important topic in mathematics.We study the pointwise convergence of p-adic Mbius maps,and classify the possibilities of limits of pointwise convergent sequences of Mbius maps acting on the projective line P1(C p),where C p is the completion of the algebraic closure of Q p.We show that if the set of pointwise convergence of a sequence of p-adic Mbius maps contains at least three points,the sequence of p-adic Mbius maps either converges to a p-adic Mbius map on the projective line P1(C p),or converges to a constant on the set of pointwise convergence with one unique exceptional point.This result generalizes the result of Piranian and Thron(1957)to the non-archimedean settings.展开更多
LetK 6 be a real cyclic sextic number field, andK 2,K 3 its quadratic and cubic subfield. Leth(L) denote the ideal class number of fieldL. Seven congruences forh - =h (K 6)/(h(K 2)h(K 3)) are obtained. In particular, ...LetK 6 be a real cyclic sextic number field, andK 2,K 3 its quadratic and cubic subfield. Leth(L) denote the ideal class number of fieldL. Seven congruences forh - =h (K 6)/(h(K 2)h(K 3)) are obtained. In particular, when the conductorf 6 ofK 6 is a primep, $Ch^ - \equiv B\tfrac{{p - 1}}{6}B\tfrac{{5(p - 1)}}{6}(\bmod p)$ , whereC is an explicitly given constant, andB n is the Bernoulli number. These results on real cyclic sextic fields are an extension of the results on quadratic and cyclic quartic fields.展开更多
This is a pedagogical introduction to the theory of buildings of Jacques Tits and to some applications of this theory.This paper has 4 parts.In the first part we discuss incidence geometry,Coxeter systems and give two...This is a pedagogical introduction to the theory of buildings of Jacques Tits and to some applications of this theory.This paper has 4 parts.In the first part we discuss incidence geometry,Coxeter systems and give two definitions of buildings.We study in the second part the spherical and affine buildings of Chevalley groups.In the third part we deal with Bruhat-Tits theory of reductive groups over local fields.Finally we discuss the construction of the p-adic flag manifolds.展开更多
The generalized stability of the Euler-Lagrange quadratic mappings in the framework of non-Archimedean random normed spaces is proved. The interdisciplinary relation among the theory of random spaces, the theory of no...The generalized stability of the Euler-Lagrange quadratic mappings in the framework of non-Archimedean random normed spaces is proved. The interdisciplinary relation among the theory of random spaces, the theory of non-Archimedean spaces, and the theory of functional equations is presented.展开更多
基金Supported by National Natural Science Foundation of China(Grant Nos.10901076,10931001,11126203and11171345)Natural Science Foundation of Shandong Province(Grant No.ZR2010AL006)
文摘In this paper we get the sharp estimates of the p-adic Hardy and Hard^Littlewood-Pdlya operators on L^q (|x|apdx). Also, we prove that the commutators generated by the p-adic Hardy operators (Hardy-Littlewood-Pdlya operators) and the central BMO functions are bounded on L^q (|x|apdx), more generally, on Herz spaces.
文摘In this paper,we introduce the weighted multilinear p-adic Hardy operator and weighted multilinear p-adic Ces`aro operator,we also obtain the boundedness of these two operators on the product of p-adic Herz spaces and p-adic Morrey-Herz spaces,the corresponding operator norms are also established in each case.Moreover,the boundedness of commutators of these two operators with symbols in central bounded mean oscillation spaces and Lipschitz spaces on p-adic Morrey-Herz spaces are also given.
文摘This paper unfolds and reviews the theory of abstract algebra, field extensions and discusses various kinds of field extensions. Field extensions are said to be algebraic or transcendental. We pay much attention to algebraic extensions. Finally, we construct finite extensions of Q and finite extensions of the function field over finite field F<sub>p </sub>using the notion of field completion, analogous to field extensions. With the study of field extensions, considering any polynomial with coefficients in the field, we can find the roots of the polynomial, and with the notion of algebraically closed fields, we have one field, F, where we can find the roots of any polynomial with coefficients in F.
文摘We generalize the congruences of Friedmann-Tamarkine (1909), Lehmer (1938), and Ernvall-Metsänkyla (1991) on the sums of powers of integers weighted by powers of the Fermat quotients to the next Fermat quotient power, namely to the third power of the Fermat quotient. Using this result and the Gessel identity (2005) combined with our past work (2021), we are able to relate residues of some truncated convolutions of Bernoulli numbers with some Ernvall-Metsänkyla residues to residues of some full convolutions of the same kind. We also establish some congruences concerning other related weighted sums of powers of integers when these sums are weighted by some analogs of the Teichmüller characters.
基金Supported by the National Natural Science Foundation of China (Grant Nos. 60763009 and 10531060) the National 863 Project (Grant No.2007AA701315)
文摘In this paper we introduce a cryptosystem based on the quotient groups of the group of rational points of an elliptic curve defined over p-adic number field. Some additional parameters are taken in this system, which have an advantage in performing point multiplication while keeping the security of ECC over finite fields. We give a method to select generators of the cryptographic groups, and give a way to represent the elements of the quotient groups with finitely bounded storage by establishing a bijection between these elements and their approximate coordinates. The addition formula under this representation is also presented.
基金Acknowledgements The authors would like to express their gratitude to the referees for their very valuable comments. This work was supported by the National Natural Science Foundation of China (Grant Nos. 11601035, 11471050).
文摘Suppose that Ip^α is the p-adic Riesz potential. In this paper, we established the boundedness of Ip^α on the p-adic generalized Morrey spaces, as well as the boundedness of the commutators generated by the p-adic Riesz potential Ip^α and p-adic generalized Campanato functions. Keywords
基金Project supported by the National Natural Science Foundation of China.
文摘Let K be a cyclic quartic number field, and k its quadratic subfield. Let h(L) denote theideal class number of field L. Ten congruenees for h^- = h(K)/h(k) are obtained. In par-ticular, if K = Q((p+s(p^(1/2))))^(1/2) with the prime number p = r^2+s^2 and s is even, then C_1h^-≡B_((p-1)/_4)B_(3(p-1)/4) (mod p) for p≡1 (mod 8); and C_2h^-≡E_((p-5)/8)E_((3p-7)/8)(mod p) for p≡5 (mod 8)where B_n and E_n are the Bernoulli and the Euler numbers. If the real K = Q((v(5+2(5^(1/2))))^(1/2),then C_3h^-≡h(Q((-v)^(1/2))) h (Q((-5v)^(1/2))) (mod 5). If 3 ramifies in K = Q(θ^(1/2)), then C_4h(K)≡h(K~*) (mod 3) with K~* = Q((-3θ^(1/2))). All the above C_i are explicitly given constants.Some relations between the factors of class numbers h^- are also obtained. These results forcyclic quartic fields are an extension of the results for quadratic fields obtained by Ankeny-Artin-Chowla, Kiselev, Carlitz and Lu Hong-wen from 1948 to 1983.
基金Supported by the National Natural Science Foun-dation of China (2001AA141010)
文摘We prove all integral points of the elliptic curve y^2=x^2-30x+133 are (x,y) = (-7,0),(-3,±14),(2, ±9),(6,±13), (5143326,±11664498677), by using the method of algebraic number theory and p-adic analysis. Furthermore, we develop a computation method to find all integral points on a class of elliptic curve y^2= (x+α)(x^2-α)(x^2-αx+b) ,α ,b∈Z,α^2〈4b and find all integer solutions of hyperelliptic Diophantine equation Dy^2=Ax^4 + Bx^2 +C,B^2〈4AC.
文摘We propose a new theory of probability based on the general principle of the statistical stabilization of relative frequencies. According to this principle it is possible to consider the statistical stabilization not only with respect to the standard real topology on the field of rational numbers Q but also with respect to an arbitrary topology on Q. The case of p-adic (and more general non-Archimedean) topologies is the most important. Our frequency theory of Probability is a fruitful extension of the frequency theory of R. von Mises[18]. It's well known that the axiomatic theory of Kolmogorov uses the frequency theory as one of the foundations. And a new general frequency theory can be considered as the base for the general axiomatic theory of probability (Kolmogorov's theory is a particular case of this theory which corresponds to the real topology of the statistical stabilization on Q). The situation in the theory of probability becomes similar to that in modern geometry. The Kolmogorov axiomatics (as the Euclidean) is only one of the possibilities, and we have generated a great number of different non-Kolmogorov theories of probability.The applications to p-adic quantum mechanics and field theory are considered.
基金Supported by National Science Foundation of China (Grant No. 11501157, 11705043,11547137)。
文摘In this note, we introduce and study a p-adic Hilbert-type integral operator and obtain its sharp norm estimate. As applications, we establish a p-adic Hilbert-type inequality with the best constant and its equivalent form.
文摘Let p be an odd prime and let n ≥1, k ≥0 and r be integers. Denote by B_k the kth Bernoulli number. It is proved that (i) If r ≥1 is odd and suppose p ≥r + 4, then (ii)If r ≥2 is even and suppose p ≥ r + 3, then (modp^2). (iii)-(2n+1)p (modp^2). This result generalizes the Glaisher’s congruence. As a corollary, a generalization of the Wolstenholme’s theorem is obtained.
文摘We introduce the p-adic weighted multilinear Hardy-Cesaro operator. We also obtain the necessary and sufficient conditions on weight functions to ensure the boundedness of that operator on the product of Lebesgue spaces, Morrey spaces, and central bounded mean oscillation spaces. In each case, we obtain the corresponding operator norms. We also characterize the good weights for the boundedness of the commutator of weighted multilinear Hardy-Cesaro operator on the product of central Morrey spaces with symbols in central bounded mean oscillation spaces.
基金supported by National Natural Science Foundation of China(Grant Nos.10831004 and 11301510)
文摘The convergence of linear fractional transformations is an important topic in mathematics.We study the pointwise convergence of p-adic Mbius maps,and classify the possibilities of limits of pointwise convergent sequences of Mbius maps acting on the projective line P1(C p),where C p is the completion of the algebraic closure of Q p.We show that if the set of pointwise convergence of a sequence of p-adic Mbius maps contains at least three points,the sequence of p-adic Mbius maps either converges to a p-adic Mbius map on the projective line P1(C p),or converges to a constant on the set of pointwise convergence with one unique exceptional point.This result generalizes the result of Piranian and Thron(1957)to the non-archimedean settings.
基金supported by National Natural Science Foundation of China (Grant Nos. 11401236 and 11471132)Self-Determined Research Funds of Central China Normal University (Grant No. CCNU17QN0009)
文摘The dynamical structure of the rational map ax+1/x on the projective line P^1(Q_2) over the field Q_2 of 2-adic numbers, is fully described.
基金Project supported by the National Natural Science Foundation of China (Grant No. 19771052).
文摘LetK 6 be a real cyclic sextic number field, andK 2,K 3 its quadratic and cubic subfield. Leth(L) denote the ideal class number of fieldL. Seven congruences forh - =h (K 6)/(h(K 2)h(K 3)) are obtained. In particular, when the conductorf 6 ofK 6 is a primep, $Ch^ - \equiv B\tfrac{{p - 1}}{6}B\tfrac{{5(p - 1)}}{6}(\bmod p)$ , whereC is an explicitly given constant, andB n is the Bernoulli number. These results on real cyclic sextic fields are an extension of the results on quadratic and cyclic quartic fields.
文摘This is a pedagogical introduction to the theory of buildings of Jacques Tits and to some applications of this theory.This paper has 4 parts.In the first part we discuss incidence geometry,Coxeter systems and give two definitions of buildings.We study in the second part the spherical and affine buildings of Chevalley groups.In the third part we deal with Bruhat-Tits theory of reductive groups over local fields.Finally we discuss the construction of the p-adic flag manifolds.
基金supported by the Natural Science Foundation of Yibin University(No.2009Z03)
文摘The generalized stability of the Euler-Lagrange quadratic mappings in the framework of non-Archimedean random normed spaces is proved. The interdisciplinary relation among the theory of random spaces, the theory of non-Archimedean spaces, and the theory of functional equations is presented.