期刊文献+

Congruences for the class numbers of real cyclic sextic number fields 被引量:2

Congruences for the class numbers of real cyclic sextic number fields
原文传递
导出
摘要 LetK 6 be a real cyclic sextic number field, andK 2,K 3 its quadratic and cubic subfield. Leth(L) denote the ideal class number of fieldL. Seven congruences forh - =h (K 6)/(h(K 2)h(K 3)) are obtained. In particular, when the conductorf 6 ofK 6 is a primep, $Ch^ - \equiv B\tfrac{{p - 1}}{6}B\tfrac{{5(p - 1)}}{6}(\bmod p)$ , whereC is an explicitly given constant, andB n is the Bernoulli number. These results on real cyclic sextic fields are an extension of the results on quadratic and cyclic quartic fields. Let K<sub>6</sub> be a real cyclic sextic number field, and K<sub>2</sub>, K<sub>3</sub> its quadratic and cubic subfield. Let h(L) denote the ideal class number of field L. Seven congruences for h<sup>-</sup> = h(K<sub>6</sub>)/(h(K<sub>2</sub>)h(K<sub>3</sub>)) are obtained. In particular, when the conductor f<sub>6</sub> of K<sub>6</sub> is a prime p, (mod p), where C is an explicitly given constant, and B<sub>n</sub> is the Bernoulli number. These results on real cyclic sextic fields are an extension of the results on quadratic and cyclic quartic fields.
作者 刘通
出处 《Science China Mathematics》 SCIE 1999年第10期1009-1018,共10页 中国科学:数学(英文版)
基金 Project supported by the National Natural Science Foundation of China (Grant No. 19771052).
关键词 REAL CYCLIC sextic NUMBER field class NUMBER P-ADIC L-function. real cyclic sextic number field class number p-adicL-function
  • 相关文献

同被引文献1

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部