期刊文献+

NOTES ON GLAISHER'S CONGRUENCES 被引量:3

NOTES ON GLAISHER'S CONGRUENCES
原文传递
导出
摘要 Let p be an odd prime and let n ≥1, k ≥0 and r be integers. Denote by B_k the kth Bernoulli number. It is proved that (i) If r ≥1 is odd and suppose p ≥r + 4, then (ii)If r ≥2 is even and suppose p ≥ r + 3, then (modp^2). (iii)-(2n+1)p (modp^2). This result generalizes the Glaisher’s congruence. As a corollary, a generalization of the Wolstenholme’s theorem is obtained.
作者 HONGSHAOFANG
出处 《Chinese Annals of Mathematics,Series B》 SCIE CSCD 2000年第1期33-38,共6页 数学年刊(B辑英文版)
基金 Postdoctoral Foundation of China
关键词 Glaisher's congruences kth Bernoulli number Teichmuller character p-adic L function 伯努利数 奇素数 整数 同余数
  • 相关文献

参考文献9

  • 1[1]Boyd, D., A p-adic study of the partial sums of the harmonic series, Experiment Math.[2](1994),[2]87-302. 被引量:1
  • 2[2]Dickson, L. E., History of the Theory of Numbers, Vol. I, Chelsea, New York, 1952 (especially Chapter[2]). 被引量:1
  • 3[3]Glaisher, J. W. L., On the residues of the sums of products of the first p-1 numbers,and their powers,to modulus p2 or pa, Quart. J. Pure Appl. Math.,[2]1(1900),321-353. 被引量:1
  • 4[4]Glaisher, J. W. L., On the residues of the inverse powers of numbers in arithmetic progression, Quart.J. Pure Appl. Math.,[2]2(1901),[2]71-305. 被引量:1
  • 5[5]Hardy, G. H. & Wright, E. M., An Introduction to the Theory of Numbers,[4]th ed. Oxford Univ. Press,London, 1960. 被引量:1
  • 6[6]Ireland, K. & Rosen, M., A Classical Introduction to Modern Number Theory, Springer-Verlag, New York, 1982. 被引量:1
  • 7[7]Lehmer, E., On congruences involving Bernoulli numbers and the quotients of Fermat and Wilson, Ann.Math.,[2]9(1938),[2]50-360. 被引量:1
  • 8[8]Washington, L., p-adic L-functions and sums of powers, J. Number Theory,[6]9(1998),[5]0-61. 被引量:1
  • 9[9]Washington, L., Introduction to Cyclotomic Fields, Springer-Verlag, New York, 1982. 被引量:1

同被引文献5

  • 1Arnold Adelberg,Shaofang Hong,Wenli Ren.Bounds of divided universal Bernoulli numbers and universal Kummer congruences[J].Proceedings of the American Mathematical Society.2007(1) 被引量:1
  • 2Donald M Davis,Katarzyna Potocka.2-primary v <sub>1</sub>-periodic homotopy groups of SU(n) revisited[J].Forum Mathematicum.2007(5) 被引量:1
  • 3F. Clarke.Hensel′s Lemma and the Divisibility by Primes of Stirling-like Numbers[J].Journal of Number Theory.1995(1) 被引量:1
  • 4Donald M. Davis.Divisibility by $2$ of Stirling-like numbers[J].Proceedings of the American Mathematical Society.1990(3) 被引量:1
  • 5I. SLAVUTSKII str. Hamarva,4, O.Box 23393, Akko, Israel. E-mail: nickl@bezeqint.net.ON THE GENERALIZED GLAISHER-HONG'S CONGRUENCES[J].Chinese Annals of Mathematics,Series B,2002,23(1):63-66. 被引量:1

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部