Oxidative stress can induce abnormal tryptophan metabolism. The present study was mainly conducted to determine the effect of dietary tryptophan levels on oxidative stress in the liver of weaned pigs challenged by diq...Oxidative stress can induce abnormal tryptophan metabolism. The present study was mainly conducted to determine the effect of dietary tryptophan levels on oxidative stress in the liver of weaned pigs challenged by diquat. A total of 36 PIC piglets weaned at 21 days of age were randomly allotted to 1 of 3 diets containing dietary tryptophan levels of 0.18, 0.30, and 0A5% for 14 d. On day 8, the piglets were injected intraperitoneally with sterile 0.9% NaCI solution or diquat (10 mg/kg body weight). During the first 7 d of trial, increasing dietary tryptophan levels enhanced average daily gain (P = 0.09) and average daily feed intake (P = 0.08), and decreased the feed efficiency (P 〈 0.05) of piglets. The growth performance was decreased by diquat injection (P 〈 0.05). Diquat injection also decreased the activities of the superoxide dismutase (SOD) and glutathione peroxidase (GPx) in the plasma and liver (P 〈 0.05), increased plasma malondialdehyde (MDA) (P 〈 0.05) and urea nitrogen (P 〈 0.05) concentrations, and enhanced MDA concentration (P = 0.09) and tryptophan 2,3-dioxygenase (TDO) activity (P = 0.07) in liver of piglets. Increasing dietary tryptophan levels could attenuate the effects of diquat injection on the MDA (P = 0.06) concentration and the activities of SOD (P = 0.09) and GPx (P = 0.05) of the liver, and plasma urea nitrogen (P = 0.06) concentration in the piglet. There was a synergistic role for increasing TDO activity in the liver between dietary tryptophan levels and diquat injection (P 〈 0.05). These results suggest that increasing dietary tryptophan levels could attenuate the oxidative stress of the liver in weaned piglets intraperitoneally injected with diquat via enhancing the antioxidant capacity.展开更多
Objective To investigate effects of glucose excursion on the oxidative/antioxidative system in subjects with different types of glucose regulation. Methods A total of 30 individuals with normal glucose regulation (NGR...Objective To investigate effects of glucose excursion on the oxidative/antioxidative system in subjects with different types of glucose regulation. Methods A total of 30 individuals with normal glucose regulation (NGR), 27 subjects with impaired glucose regulation (IGR) and 27 subjects with newly diagnosed type 2 diabetes mellitus (T2DM) were selected and recruited for 3 days’ continuous glucose monitor system (CGMS) assessment. The data from CGMS was used to calculate the mean amplitude of glycemic excursion (MAGE), mean blood glucose (MBG) and its standard deviation (SDBG), area under the ROC curve when the blood glucose 5.6 mmol/L within 24 h (AUC 5.6), mean of daily differences (MODD), and mean postprandial glucose excursion (MPPGE). In all groups, the content or activity of malondialdehyde (MDA), total antioxidation capacity (TAOC) and glutathione peroxidase (GSH‐Px) were detected. Results Glucose excursion parameters of subjects with T2DM or IGR were higher than those of NGR subjects (P0.05 or 0.01). Moreover, Glucose excursion parameters of T2DM subjects were higher than those of IGR subjects (P0.05 or 0.01). Subjects with T2DM or IGR had significant higher MDA levels and lower GSH‐Px/MDA and TAOC/MDA levels compared to NGR subjects (P0.01). T2DM subjects had even higher MDA levels and lower GSH‐Px/MDA levels than IGR (P0.05 or 0.01). According to the median of normal population for MAGE, T2DM and IGR subjects were divided into MAGE2.6mmol/L Group and MAGE≤2.6mmol/L Group. MAGE2.6mmol/L Group had higher levels of MDA and lower levels of GSH‐Px/MDA than MAGE≤2.6mmol/L Group (P0.05). There was no significant difference between the two groups (P0.05) in terms of the levels of TAOC/MDA. Pearson correlation analysis showed that MDA was positively correlated with FPG, 2hPG, MAGE, and SBP. GSH‐Px/MDA was negatively correlated with MAGE and TC. TAOC/MDA was negatively correlated with FPG. Partial correlation analysis showed that the relationship between MDA and MAGE, GSH‐Px/MDA, and MAGE remained展开更多
Oxidative stress can damage cellular antioxidant defense and reduce livestock production efficiency.Spermine is a ubiquitous cellular component that plays important roles in stabilizing nucleic acids,modulating cell g...Oxidative stress can damage cellular antioxidant defense and reduce livestock production efficiency.Spermine is a ubiquitous cellular component that plays important roles in stabilizing nucleic acids,modulating cell growth and differentiation, and regulating ion channel activities. Spermine has the potential to alleviate the effects of oxidative stress. However, to date no information is available about the effect of spermine administration on antioxidant property of the liver and spleen in any mammalian in vivo system. This study aims to investigate the protective effect of spermine on rat liver and spleen under oxidative stress. Rats received intragastric administration of either 0.4 μmol/g body weight of spermine or saline once a day for 3 days. The rats in each treatment were then injected with either diquat or sterile saline at 12 mg/kg body weight. Liver and spleen samples were collected 48 h after the last spermine ingestion.Results showed that regardless of diquat treatment, spermine administration significantly reduced the malondialdehyde(MDA) content by 23.78% in the liver and by 5.75% in the spleen, respectively(P < 0.05).Spermine administration also enhanced the catalase(CAT) activity, anti-hydroxyl radical(AHR) capacity and glutathione(GSH) content by 38.68%, 15.53% and 1.32% in the spleen, respectively(P< 0.05). There were interactions between spermine administration and diquat injection about anti-superoxide anion(ASA),AHR capacity, CAT activity, GSH content, and total antioxidant capacity(T-AOC) in the liver and about ASA capacity and T-AOC in the spleen of weaned rats(P < 0.05). Compared with the control group, spermine administration significantly increased the AHR capacity, CAT activity, GSH content, and T-AOC by 40.23%,31.15%, 30.25%, 35.37% in the liver, respectively(P < 0.05) and increased the T-AOC by 8% in the spleen of weaned rats(P < 0.05). Compared with the diquat group, spermine + diquat group significantly increased ASA capacity by 15.63% in the liver and by 73.41% in the spleen of w展开更多
基金financially supported by the earmarked fund for the China Agriculture Research System(CARS-36)the grant from the Science and Technology Support Program of Sichuan Province(13ZC2237)
文摘Oxidative stress can induce abnormal tryptophan metabolism. The present study was mainly conducted to determine the effect of dietary tryptophan levels on oxidative stress in the liver of weaned pigs challenged by diquat. A total of 36 PIC piglets weaned at 21 days of age were randomly allotted to 1 of 3 diets containing dietary tryptophan levels of 0.18, 0.30, and 0A5% for 14 d. On day 8, the piglets were injected intraperitoneally with sterile 0.9% NaCI solution or diquat (10 mg/kg body weight). During the first 7 d of trial, increasing dietary tryptophan levels enhanced average daily gain (P = 0.09) and average daily feed intake (P = 0.08), and decreased the feed efficiency (P 〈 0.05) of piglets. The growth performance was decreased by diquat injection (P 〈 0.05). Diquat injection also decreased the activities of the superoxide dismutase (SOD) and glutathione peroxidase (GPx) in the plasma and liver (P 〈 0.05), increased plasma malondialdehyde (MDA) (P 〈 0.05) and urea nitrogen (P 〈 0.05) concentrations, and enhanced MDA concentration (P = 0.09) and tryptophan 2,3-dioxygenase (TDO) activity (P = 0.07) in liver of piglets. Increasing dietary tryptophan levels could attenuate the effects of diquat injection on the MDA (P = 0.06) concentration and the activities of SOD (P = 0.09) and GPx (P = 0.05) of the liver, and plasma urea nitrogen (P = 0.06) concentration in the piglet. There was a synergistic role for increasing TDO activity in the liver between dietary tryptophan levels and diquat injection (P 〈 0.05). These results suggest that increasing dietary tryptophan levels could attenuate the oxidative stress of the liver in weaned piglets intraperitoneally injected with diquat via enhancing the antioxidant capacity.
基金supported by the Shanghai United Developing Technology Project of Municipal Hospitals (SHDC12006101)the Health Bureau of Zhejiang Province (2009B091)
文摘Objective To investigate effects of glucose excursion on the oxidative/antioxidative system in subjects with different types of glucose regulation. Methods A total of 30 individuals with normal glucose regulation (NGR), 27 subjects with impaired glucose regulation (IGR) and 27 subjects with newly diagnosed type 2 diabetes mellitus (T2DM) were selected and recruited for 3 days’ continuous glucose monitor system (CGMS) assessment. The data from CGMS was used to calculate the mean amplitude of glycemic excursion (MAGE), mean blood glucose (MBG) and its standard deviation (SDBG), area under the ROC curve when the blood glucose 5.6 mmol/L within 24 h (AUC 5.6), mean of daily differences (MODD), and mean postprandial glucose excursion (MPPGE). In all groups, the content or activity of malondialdehyde (MDA), total antioxidation capacity (TAOC) and glutathione peroxidase (GSH‐Px) were detected. Results Glucose excursion parameters of subjects with T2DM or IGR were higher than those of NGR subjects (P0.05 or 0.01). Moreover, Glucose excursion parameters of T2DM subjects were higher than those of IGR subjects (P0.05 or 0.01). Subjects with T2DM or IGR had significant higher MDA levels and lower GSH‐Px/MDA and TAOC/MDA levels compared to NGR subjects (P0.01). T2DM subjects had even higher MDA levels and lower GSH‐Px/MDA levels than IGR (P0.05 or 0.01). According to the median of normal population for MAGE, T2DM and IGR subjects were divided into MAGE2.6mmol/L Group and MAGE≤2.6mmol/L Group. MAGE2.6mmol/L Group had higher levels of MDA and lower levels of GSH‐Px/MDA than MAGE≤2.6mmol/L Group (P0.05). There was no significant difference between the two groups (P0.05) in terms of the levels of TAOC/MDA. Pearson correlation analysis showed that MDA was positively correlated with FPG, 2hPG, MAGE, and SBP. GSH‐Px/MDA was negatively correlated with MAGE and TC. TAOC/MDA was negatively correlated with FPG. Partial correlation analysis showed that the relationship between MDA and MAGE, GSH‐Px/MDA, and MAGE remained
基金supported by the National Natural Science Foundation of China (No. 31301986)the Academy of Kechuang Feed Industry in Sichuan and Program for Discipline Construction in Sichuan Agricultural University (to G. Liu) for financial support
文摘Oxidative stress can damage cellular antioxidant defense and reduce livestock production efficiency.Spermine is a ubiquitous cellular component that plays important roles in stabilizing nucleic acids,modulating cell growth and differentiation, and regulating ion channel activities. Spermine has the potential to alleviate the effects of oxidative stress. However, to date no information is available about the effect of spermine administration on antioxidant property of the liver and spleen in any mammalian in vivo system. This study aims to investigate the protective effect of spermine on rat liver and spleen under oxidative stress. Rats received intragastric administration of either 0.4 μmol/g body weight of spermine or saline once a day for 3 days. The rats in each treatment were then injected with either diquat or sterile saline at 12 mg/kg body weight. Liver and spleen samples were collected 48 h after the last spermine ingestion.Results showed that regardless of diquat treatment, spermine administration significantly reduced the malondialdehyde(MDA) content by 23.78% in the liver and by 5.75% in the spleen, respectively(P < 0.05).Spermine administration also enhanced the catalase(CAT) activity, anti-hydroxyl radical(AHR) capacity and glutathione(GSH) content by 38.68%, 15.53% and 1.32% in the spleen, respectively(P< 0.05). There were interactions between spermine administration and diquat injection about anti-superoxide anion(ASA),AHR capacity, CAT activity, GSH content, and total antioxidant capacity(T-AOC) in the liver and about ASA capacity and T-AOC in the spleen of weaned rats(P < 0.05). Compared with the control group, spermine administration significantly increased the AHR capacity, CAT activity, GSH content, and T-AOC by 40.23%,31.15%, 30.25%, 35.37% in the liver, respectively(P < 0.05) and increased the T-AOC by 8% in the spleen of weaned rats(P < 0.05). Compared with the diquat group, spermine + diquat group significantly increased ASA capacity by 15.63% in the liver and by 73.41% in the spleen of w