The topic of this article is one-sided hypothesis testing for disparity, i.e., the mean of one group is larger than that of another when there is uncertainty as to which group a datum is drawn. For each datum, the unc...The topic of this article is one-sided hypothesis testing for disparity, i.e., the mean of one group is larger than that of another when there is uncertainty as to which group a datum is drawn. For each datum, the uncertainty is captured with a given discrete probability distribution over the groups. Such situations arise, for example, in the use of Bayesian imputation methods to assess race and ethnicity disparities with certain insurance, health, and financial data. A widely used method to implement this assessment is the Bayesian Improved Surname Geocoding (BISG) method which assigns a discrete probability over six race/ethnicity groups to an individual given the individual’s surname and address location. Using a Bayesian framework and Markov Chain Monte Carlo sampling from the joint posterior distribution of the group means, the probability of a disparity hypothesis is estimated. Four methods are developed and compared with an illustrative data set. Three of these methods are implemented in an R-code and one method in WinBUGS. These methods are programed for any number of groups between two and six inclusive. All the codes are provided in the appendices.展开更多
Type-I censoring mechanism arises when the number of units experiencing the event is random but the total duration of the study is fixed. There are a number of mathematical approaches developed to handle this type of ...Type-I censoring mechanism arises when the number of units experiencing the event is random but the total duration of the study is fixed. There are a number of mathematical approaches developed to handle this type of data. The purpose of the research was to estimate the three parameters of the Frechet distribution via the frequentist Maximum Likelihood and the Bayesian Estimators. In this paper, the maximum likelihood method (MLE) is not available of the three parameters in the closed forms;therefore, it was solved by the numerical methods. Similarly, the Bayesian estimators are implemented using Jeffreys and gamma priors with two loss functions, which are: squared error loss function and Linear Exponential Loss Function (LINEX). The parameters of the Frechet distribution via Bayesian cannot be obtained analytically and therefore Markov Chain Monte Carlo is used, where the full conditional distribution for the three parameters is obtained via Metropolis-Hastings algorithm. Comparisons of the estimators are obtained using Mean Square Errors (MSE) to determine the best estimator of the three parameters of the Frechet distribution. The results show that the Bayesian estimation under Linear Exponential Loss Function based on Type-I censored data is a better estimator for all the parameter estimates when the value of the loss parameter is positive.展开更多
Here the estimating problem of a single sinusoidal signal in the additive symmetricα-stable Gaussian(ASαSG)noise is investigated.The ASαSG noise here is expressed as the additive of a Gaussian noise and a symmetric...Here the estimating problem of a single sinusoidal signal in the additive symmetricα-stable Gaussian(ASαSG)noise is investigated.The ASαSG noise here is expressed as the additive of a Gaussian noise and a symmetricα-stable distributed variable.As the probability density function(PDF)of the ASαSG is complicated,traditional estimators cannot provide optimum estimates.Based on the Metropolis-Hastings(M-H)sampling scheme,a robust frequency estimator is proposed for ASαSG noise.Moreover,to accelerate the convergence rate of the developed algorithm,a new criterion of reconstructing the proposal covar-iance is derived,whose main idea is updating the proposal variance using several previous samples drawn in each iteration.The approximation PDF of the ASαSG noise,which is referred to the weighted sum of a Voigt function and a Gaussian PDF,is also employed to reduce the computational complexity.The computer simulations show that the performance of our method is better than the maximum likelihood and the lp-norm estimators.展开更多
A random walk Metropolis-Hastings algorithm has been widely used in sampling the parameter of spatial interaction in spatial autoregressive model from a Bayesian point of view. In addition, as an alternative approach,...A random walk Metropolis-Hastings algorithm has been widely used in sampling the parameter of spatial interaction in spatial autoregressive model from a Bayesian point of view. In addition, as an alternative approach, the griddy Gibbs sampler is proposed by [1] and utilized by [2]. This paper proposes an acceptance-rejection Metropolis-Hastings algorithm as a third approach, and compares these three algorithms through Monte Carlo experiments. The experimental results show that the griddy Gibbs sampler is the most efficient algorithm among the algorithms whether the number of observations is small or not in terms of the computation time and the inefficiency factors. Moreover, it seems to work well when the size of grid is 100.展开更多
In this paper, we construct a Bayesian framework combining Type-Ⅰ progressively hybrid censoring scheme and competing risks which are independently distributed as exponentiated Weibull distribution with one scale par...In this paper, we construct a Bayesian framework combining Type-Ⅰ progressively hybrid censoring scheme and competing risks which are independently distributed as exponentiated Weibull distribution with one scale parameter and two shape parameters. Since there exist unknown hyper-parameters in prior density functions of shape parameters, we consider the hierarchical priors to obtain the individual marginal posterior density functions,Bayesian estimates and highest posterior density credible intervals. As explicit expressions of estimates cannot be obtained, the componentwise updating algorithm of Metropolis-Hastings method is employed to compute the numerical results. Finally, it is concluded that Bayesian estimates have a good performance.展开更多
This study considers the estimation of Maximum Likelihood Estimator and the Bayesian Estimator of the Weibull distribution with interval-censored data. The Bayesian estimation can’t be used to solve the parameters an...This study considers the estimation of Maximum Likelihood Estimator and the Bayesian Estimator of the Weibull distribution with interval-censored data. The Bayesian estimation can’t be used to solve the parameters analytically and therefore Markov Chain Monte Carlo is used, where the full conditional distribution for the scale and shape parameters are obtained via Metropolis-Hastings algorithm. Also Lindley’s approximation is used. The two methods are compared to maximum likelihood counterparts and the comparisons are made with respect to the mean square error (MSE) to determine the best for estimating of the scale and shape parameters.展开更多
The deterministic geophysical inversion methods are dominant when inverting magnetotelluric data whereby its results largely depends on the assumed initial model and only a single representative solution is obtained. ...The deterministic geophysical inversion methods are dominant when inverting magnetotelluric data whereby its results largely depends on the assumed initial model and only a single representative solution is obtained. A common problem to this approach is that all inversion techniques suffer from non-uniqueness since all model solutions are subjected to errors, under-determination and uncertainty. A statistical approach in nature is a possible solution to this problem as it can provide extensive information about unknown parameters. In this paper, we developed a 1D Bayesian inversion code based Metropolis-Hastings algorithm whereby the uncertainty of the earth model parameters were quantified by examining the posterior model distribution. As a test, we applied the inversion algorithm to synthetic model data obtained from available literature based on a three layer model (K, H, A and Q). The frequency for the magnetotelluric impedance data was generated from 0.01 to 100 Hz. A 5% Gaussian noise was added at each frequency in order to simulate errors to the synthetic results. The developed algorithm has been successfully applied to all types of models and results obtained have demonstrated a good compatibility with the initial synthetic model data.展开更多
Yin [1] has developed a new Bayesian measure of evidence for testing a point null hypothesis which agrees with the frequentist p-value thereby, solving Lindley’s paradox. Yin and Li [2] extended the methodology of Yi...Yin [1] has developed a new Bayesian measure of evidence for testing a point null hypothesis which agrees with the frequentist p-value thereby, solving Lindley’s paradox. Yin and Li [2] extended the methodology of Yin [1] to the case of the Behrens-Fisher problem by assigning Jeffreys’ independent prior to the nuisance parameters. In this paper, we were able to show both analytically and through the results from simulation studies that the methodology of Yin?[1] solves simultaneously, the Behrens-Fisher problem and Lindley’s paradox when a Gamma prior is assigned to the nuisance parameters.展开更多
This paper mainly talks about a popular approach of volatility of a GARCH-type model in R, while the disturbances are independent and have identical Student-t distribution. It uses the Metropolis-Hastings method to pe...This paper mainly talks about a popular approach of volatility of a GARCH-type model in R, while the disturbances are independent and have identical Student-t distribution. It uses the Metropolis-Hastings method to perform the computations and gives the programs in details in R.展开更多
In this paper we have demonstrated the ability of the new Bayesian measure of evidence of Yin (2012, Computational Statistics, 27: 237-249) to solve both the Behrens-Fisher problem and Lindley's paradox. We have p...In this paper we have demonstrated the ability of the new Bayesian measure of evidence of Yin (2012, Computational Statistics, 27: 237-249) to solve both the Behrens-Fisher problem and Lindley's paradox. We have provided a general proof that for any prior which yields a linear combination of two independent t random variables as posterior distribution of the di erence of means, the new Bayesian measure of evidence given that prior will solve Lindleys' paradox thereby serving as a general proof for the works of Yin and Li (2014, Journal of Applied Mathematics, 2014(978691)) and Goltong?and Doguwa (2018, Open Journal of Statistics, 8: 902-914).?Using the Pareto prior as an example, we have shown by the use of?simulation results that the new Bayesian measure of evidence solves?Lindley's paradox.展开更多
The accuracy of distribution system state estimation(DDSE)is reduced when phasor measurement unit(PMU)measurements contain outliers because of cyber attacks or global positioning system spoofing attacks.Therefore,to e...The accuracy of distribution system state estimation(DDSE)is reduced when phasor measurement unit(PMU)measurements contain outliers because of cyber attacks or global positioning system spoofing attacks.Therefore,to enhance the robustness of DDSE to measurement outliers,approximate the target distribution of Metropolis-Hastings(MH)sampling,and judge the prediction of the long short-term memory(LSTM)network,this paper proposes an outlier reconstruction based state estimation method using the equivalent model of the LSTM network and MH sampling(E-LM model),motivated by the characteristics of the chronological correlations of PMU measurements.First,the target distribution of outlier reconstruction is derived using a kernel density estimation function.Subsequently,the reasons and advantages of the E-LM model are explained and analyzed from a mathematical point of view.The proposed LSTM-based MH sampling can approximate the target distribution of MH sampling to decrease the number of the futile iterations.Moreover,the proposed MH-based forecasting of the LSTM can judge each LSTM prediction,which is independent of its true value.Finally,simulations are conducted to evaluate the performance of the E-LM model by integrating the LSTM network and the MH sampling into the outlier reconstruction based DDSE.展开更多
In many applications such as multiuser radar communications and astrophysical imaging processing,the encountered noise is usually described by the finite sum ofα-stable(1≤α<2)variables.In this paper,a new parame...In many applications such as multiuser radar communications and astrophysical imaging processing,the encountered noise is usually described by the finite sum ofα-stable(1≤α<2)variables.In this paper,a new parameter estimator is developed,in the presence of this new heavy-tailed noise.Since the closed-formPDF of theα-stable variable does not exist exceptα=1 andα=2,we take the sum of the Cauchy(α=1)and Gaussian(α=2)noise as an example,namely,additive Cauchy-Gaussian(ACG)noise.The probability density function(PDF)of the mixed random variable,can be calculated by the convolution of the Cauchy’s PDF and Gaussian’s PDF.Because of the complicated integral in the PDF expression of the ACG noise,traditional estimators,e.g.,maximum likelihood,are analytically not tractable.To obtain the optimal estimates,a new robust frequency estimator is devised by employing the Metropolis-Hastings(M-H)algorithm.Meanwhile,to guarantee the fast convergence of the M-H chain,a new proposal covariance criterion is also devised,where the batch of previous samples are utilized to iteratively update the proposal covariance in each sampling process.Computer simulations are carried out to indicate the superiority of the developed scheme,when compared with several conventional estimators and the Cramér-Rao lower bound.展开更多
文摘The topic of this article is one-sided hypothesis testing for disparity, i.e., the mean of one group is larger than that of another when there is uncertainty as to which group a datum is drawn. For each datum, the uncertainty is captured with a given discrete probability distribution over the groups. Such situations arise, for example, in the use of Bayesian imputation methods to assess race and ethnicity disparities with certain insurance, health, and financial data. A widely used method to implement this assessment is the Bayesian Improved Surname Geocoding (BISG) method which assigns a discrete probability over six race/ethnicity groups to an individual given the individual’s surname and address location. Using a Bayesian framework and Markov Chain Monte Carlo sampling from the joint posterior distribution of the group means, the probability of a disparity hypothesis is estimated. Four methods are developed and compared with an illustrative data set. Three of these methods are implemented in an R-code and one method in WinBUGS. These methods are programed for any number of groups between two and six inclusive. All the codes are provided in the appendices.
文摘Type-I censoring mechanism arises when the number of units experiencing the event is random but the total duration of the study is fixed. There are a number of mathematical approaches developed to handle this type of data. The purpose of the research was to estimate the three parameters of the Frechet distribution via the frequentist Maximum Likelihood and the Bayesian Estimators. In this paper, the maximum likelihood method (MLE) is not available of the three parameters in the closed forms;therefore, it was solved by the numerical methods. Similarly, the Bayesian estimators are implemented using Jeffreys and gamma priors with two loss functions, which are: squared error loss function and Linear Exponential Loss Function (LINEX). The parameters of the Frechet distribution via Bayesian cannot be obtained analytically and therefore Markov Chain Monte Carlo is used, where the full conditional distribution for the three parameters is obtained via Metropolis-Hastings algorithm. Comparisons of the estimators are obtained using Mean Square Errors (MSE) to determine the best estimator of the three parameters of the Frechet distribution. The results show that the Bayesian estimation under Linear Exponential Loss Function based on Type-I censored data is a better estimator for all the parameter estimates when the value of the loss parameter is positive.
基金supported by National Key R&D Program of China(Grant No.2018YFF01012600)National Natural Science Foundation of China(Grant No.61701021)Fundamental Research Funds for the Central Universities(Grant No.FRF-TP-19-006A3).
文摘Here the estimating problem of a single sinusoidal signal in the additive symmetricα-stable Gaussian(ASαSG)noise is investigated.The ASαSG noise here is expressed as the additive of a Gaussian noise and a symmetricα-stable distributed variable.As the probability density function(PDF)of the ASαSG is complicated,traditional estimators cannot provide optimum estimates.Based on the Metropolis-Hastings(M-H)sampling scheme,a robust frequency estimator is proposed for ASαSG noise.Moreover,to accelerate the convergence rate of the developed algorithm,a new criterion of reconstructing the proposal covar-iance is derived,whose main idea is updating the proposal variance using several previous samples drawn in each iteration.The approximation PDF of the ASαSG noise,which is referred to the weighted sum of a Voigt function and a Gaussian PDF,is also employed to reduce the computational complexity.The computer simulations show that the performance of our method is better than the maximum likelihood and the lp-norm estimators.
文摘A random walk Metropolis-Hastings algorithm has been widely used in sampling the parameter of spatial interaction in spatial autoregressive model from a Bayesian point of view. In addition, as an alternative approach, the griddy Gibbs sampler is proposed by [1] and utilized by [2]. This paper proposes an acceptance-rejection Metropolis-Hastings algorithm as a third approach, and compares these three algorithms through Monte Carlo experiments. The experimental results show that the griddy Gibbs sampler is the most efficient algorithm among the algorithms whether the number of observations is small or not in terms of the computation time and the inefficiency factors. Moreover, it seems to work well when the size of grid is 100.
基金Supported by the National Natural Science Foundation of China(71571144,71401134,71171164,11701406) Supported by the International Cooperation and Exchanges in Science and Technology Program of Shaanxi Province(2016KW-033)
文摘In this paper, we construct a Bayesian framework combining Type-Ⅰ progressively hybrid censoring scheme and competing risks which are independently distributed as exponentiated Weibull distribution with one scale parameter and two shape parameters. Since there exist unknown hyper-parameters in prior density functions of shape parameters, we consider the hierarchical priors to obtain the individual marginal posterior density functions,Bayesian estimates and highest posterior density credible intervals. As explicit expressions of estimates cannot be obtained, the componentwise updating algorithm of Metropolis-Hastings method is employed to compute the numerical results. Finally, it is concluded that Bayesian estimates have a good performance.
文摘This study considers the estimation of Maximum Likelihood Estimator and the Bayesian Estimator of the Weibull distribution with interval-censored data. The Bayesian estimation can’t be used to solve the parameters analytically and therefore Markov Chain Monte Carlo is used, where the full conditional distribution for the scale and shape parameters are obtained via Metropolis-Hastings algorithm. Also Lindley’s approximation is used. The two methods are compared to maximum likelihood counterparts and the comparisons are made with respect to the mean square error (MSE) to determine the best for estimating of the scale and shape parameters.
文摘The deterministic geophysical inversion methods are dominant when inverting magnetotelluric data whereby its results largely depends on the assumed initial model and only a single representative solution is obtained. A common problem to this approach is that all inversion techniques suffer from non-uniqueness since all model solutions are subjected to errors, under-determination and uncertainty. A statistical approach in nature is a possible solution to this problem as it can provide extensive information about unknown parameters. In this paper, we developed a 1D Bayesian inversion code based Metropolis-Hastings algorithm whereby the uncertainty of the earth model parameters were quantified by examining the posterior model distribution. As a test, we applied the inversion algorithm to synthetic model data obtained from available literature based on a three layer model (K, H, A and Q). The frequency for the magnetotelluric impedance data was generated from 0.01 to 100 Hz. A 5% Gaussian noise was added at each frequency in order to simulate errors to the synthetic results. The developed algorithm has been successfully applied to all types of models and results obtained have demonstrated a good compatibility with the initial synthetic model data.
文摘Yin [1] has developed a new Bayesian measure of evidence for testing a point null hypothesis which agrees with the frequentist p-value thereby, solving Lindley’s paradox. Yin and Li [2] extended the methodology of Yin [1] to the case of the Behrens-Fisher problem by assigning Jeffreys’ independent prior to the nuisance parameters. In this paper, we were able to show both analytically and through the results from simulation studies that the methodology of Yin?[1] solves simultaneously, the Behrens-Fisher problem and Lindley’s paradox when a Gamma prior is assigned to the nuisance parameters.
文摘This paper mainly talks about a popular approach of volatility of a GARCH-type model in R, while the disturbances are independent and have identical Student-t distribution. It uses the Metropolis-Hastings method to perform the computations and gives the programs in details in R.
文摘In this paper we have demonstrated the ability of the new Bayesian measure of evidence of Yin (2012, Computational Statistics, 27: 237-249) to solve both the Behrens-Fisher problem and Lindley's paradox. We have provided a general proof that for any prior which yields a linear combination of two independent t random variables as posterior distribution of the di erence of means, the new Bayesian measure of evidence given that prior will solve Lindleys' paradox thereby serving as a general proof for the works of Yin and Li (2014, Journal of Applied Mathematics, 2014(978691)) and Goltong?and Doguwa (2018, Open Journal of Statistics, 8: 902-914).?Using the Pareto prior as an example, we have shown by the use of?simulation results that the new Bayesian measure of evidence solves?Lindley's paradox.
基金supported by the National Key Research and Development Program(No.2017YFB0902900).
文摘The accuracy of distribution system state estimation(DDSE)is reduced when phasor measurement unit(PMU)measurements contain outliers because of cyber attacks or global positioning system spoofing attacks.Therefore,to enhance the robustness of DDSE to measurement outliers,approximate the target distribution of Metropolis-Hastings(MH)sampling,and judge the prediction of the long short-term memory(LSTM)network,this paper proposes an outlier reconstruction based state estimation method using the equivalent model of the LSTM network and MH sampling(E-LM model),motivated by the characteristics of the chronological correlations of PMU measurements.First,the target distribution of outlier reconstruction is derived using a kernel density estimation function.Subsequently,the reasons and advantages of the E-LM model are explained and analyzed from a mathematical point of view.The proposed LSTM-based MH sampling can approximate the target distribution of MH sampling to decrease the number of the futile iterations.Moreover,the proposed MH-based forecasting of the LSTM can judge each LSTM prediction,which is independent of its true value.Finally,simulations are conducted to evaluate the performance of the E-LM model by integrating the LSTM network and the MH sampling into the outlier reconstruction based DDSE.
基金supported by National Natural Science Foundation of China(Grant No.52075397,61905184,61701021)Fundamental Research Funds for the Central Universities(Grant No.FRF-TP-19-006A3).
文摘In many applications such as multiuser radar communications and astrophysical imaging processing,the encountered noise is usually described by the finite sum ofα-stable(1≤α<2)variables.In this paper,a new parameter estimator is developed,in the presence of this new heavy-tailed noise.Since the closed-formPDF of theα-stable variable does not exist exceptα=1 andα=2,we take the sum of the Cauchy(α=1)and Gaussian(α=2)noise as an example,namely,additive Cauchy-Gaussian(ACG)noise.The probability density function(PDF)of the mixed random variable,can be calculated by the convolution of the Cauchy’s PDF and Gaussian’s PDF.Because of the complicated integral in the PDF expression of the ACG noise,traditional estimators,e.g.,maximum likelihood,are analytically not tractable.To obtain the optimal estimates,a new robust frequency estimator is devised by employing the Metropolis-Hastings(M-H)algorithm.Meanwhile,to guarantee the fast convergence of the M-H chain,a new proposal covariance criterion is also devised,where the batch of previous samples are utilized to iteratively update the proposal covariance in each sampling process.Computer simulations are carried out to indicate the superiority of the developed scheme,when compared with several conventional estimators and the Cramér-Rao lower bound.