期刊文献+
共找到161篇文章
< 1 2 9 >
每页显示 20 50 100
基于贝叶斯理论的软夹层多模式瑞雷波频散曲线反演研究 被引量:13
1
作者 付代光 刘江平 +4 位作者 周黎明 徐浩 廖锦芳 陈松 郭道龙 《岩土工程学报》 EI CAS CSCD 北大核心 2015年第2期321-329,共9页
获得较高精度的软夹层横波速度和厚度是瑞雷波频散曲线反演的难点之一,尤其对一些低敏感性的软夹层而言,单纯依靠传统的算法改进以及多模式反演,反演效果往往不是非常显著。首次尝试采用算法改进、多模式及非线性贝叶斯定理相结合反演... 获得较高精度的软夹层横波速度和厚度是瑞雷波频散曲线反演的难点之一,尤其对一些低敏感性的软夹层而言,单纯依靠传统的算法改进以及多模式反演,反演效果往往不是非常显著。首次尝试采用算法改进、多模式及非线性贝叶斯定理相结合反演低敏感性软夹层。算法改进体现在,将阻尼惯性权和混沌思想融入到粒子群算法中,但改进算法并未解决软夹层模型低敏感性的困扰;为从反演解的角度分析评价影响反演精度因素,采用无偏Metropolis-Hastings sampling(MHS)方法对后验概率进行数值积分,并通过参数旋转提高采用效率,积分得到的1D和混合边缘概率分布以及参数相关系数矩阵等参数反应了反演解的不确定性和参数间相关性等信息。为解决低敏感性反演精度低问题,尝试采用贝叶斯信息准则(BIC),判断出最佳参数化模型,而此准则得到的最佳模型与理论模型更为吻合。应用非线性贝叶斯方法和BIC准则反演实测防渗墙数据,得到的反演剖面也与已知防渗墙结构较好吻合。 展开更多
关键词 贝叶斯反演 贝叶斯信息准则 metropolis-hastings sampling 软夹层 瑞雷波频散曲线 粒子群算法改进
下载PDF
空间滞后模型的贝叶斯估计 被引量:11
2
作者 方丽婷 《统计研究》 CSSCI 北大核心 2014年第5期102-106,共5页
本文采用Bayes方法对空间滞后模型进行全面分析。在构建模型的贝叶斯框架时,对模型系数与误差方差分别选取正态先验分布和逆伽玛先验分布,以便获得参数的联合后验分布和条件后验分布。在抽样估计时,主要使用MCMC方法,同时还设计了一个... 本文采用Bayes方法对空间滞后模型进行全面分析。在构建模型的贝叶斯框架时,对模型系数与误差方差分别选取正态先验分布和逆伽玛先验分布,以便获得参数的联合后验分布和条件后验分布。在抽样估计时,主要使用MCMC方法,同时还设计了一个简单随机游动Metropolis抽样器,以便从空间权重因子系数的条件后验分布中进行抽样。最后应用所建议的方法进行数值模拟。 展开更多
关键词 BAYES估计 metropolis-hastings MCMC
下载PDF
快速Metropolis-Hastings变异的遗传重采样粒子滤波器 被引量:6
3
作者 李翠芸 姬红兵 《系统工程与电子技术》 EI CSCD 北大核心 2009年第8期1968-1972,共5页
为了解决传统粒子滤波器粒子退化与贫乏问题,提出了快速变异的遗传重采样粒子滤波算法。该算法将快速Metropolis-Hastings(MH)移动作为遗传算法的变异算子,使得快速变异算子与传统交叉算子、传统选择算子组合为一种新的粒子重采样算法... 为了解决传统粒子滤波器粒子退化与贫乏问题,提出了快速变异的遗传重采样粒子滤波算法。该算法将快速Metropolis-Hastings(MH)移动作为遗传算法的变异算子,使得快速变异算子与传统交叉算子、传统选择算子组合为一种新的粒子重采样算法。快速MH变异能对粒子进行移动,使得粒子的稳定分布为目标的后验概率密度分布。快速变异能有效解决一般变异算法易发散的问题,可以更快地提取到反映目标概率特征的典型粒子。实验证明,基于快速MH变异的遗传重采样方法可以快速提高粒子的多样性,避免粒子退化,减小跟踪误差。 展开更多
关键词 粒子滤波 metropolis-hastings 变异 遗传算法 重采样
下载PDF
A Bayesian Mixture Model Approach to Disparity Testing
4
作者 Gary C. McDonald 《Applied Mathematics》 2024年第3期214-234,共21页
The topic of this article is one-sided hypothesis testing for disparity, i.e., the mean of one group is larger than that of another when there is uncertainty as to which group a datum is drawn. For each datum, the unc... The topic of this article is one-sided hypothesis testing for disparity, i.e., the mean of one group is larger than that of another when there is uncertainty as to which group a datum is drawn. For each datum, the uncertainty is captured with a given discrete probability distribution over the groups. Such situations arise, for example, in the use of Bayesian imputation methods to assess race and ethnicity disparities with certain insurance, health, and financial data. A widely used method to implement this assessment is the Bayesian Improved Surname Geocoding (BISG) method which assigns a discrete probability over six race/ethnicity groups to an individual given the individual’s surname and address location. Using a Bayesian framework and Markov Chain Monte Carlo sampling from the joint posterior distribution of the group means, the probability of a disparity hypothesis is estimated. Four methods are developed and compared with an illustrative data set. Three of these methods are implemented in an R-code and one method in WinBUGS. These methods are programed for any number of groups between two and six inclusive. All the codes are provided in the appendices. 展开更多
关键词 Bayesian Improved Surname and Geocoding (BISG) Mixture Likelihood Function Posterior Distribution metropolis-hastings Algorithms Random Walk Chain Independence Chain Gibbs Sampling WINBUGS
下载PDF
改进自适应渐进 II 型删失下 Chen 分布的贝叶斯分析
5
作者 张莉 《理论数学》 2024年第1期400-415,共16页
本文基于改进的自适应渐进 II 型删失,对 Chen 分布进行了贝叶斯分析。首先利用 EM 算法得 到了参数的极大似然估计。针对共轭和非共轭的四种信息先验,运用大方差和遗传算法确定了先 验的超参数。进而根据 Metropolis-Hastings 算法实... 本文基于改进的自适应渐进 II 型删失,对 Chen 分布进行了贝叶斯分析。首先利用 EM 算法得 到了参数的极大似然估计。针对共轭和非共轭的四种信息先验,运用大方差和遗传算法确定了先 验的超参数。进而根据 Metropolis-Hastings 算法实现了后验分布样本的抽取。最后,通过真实 数据集对不同先验下的贝叶斯估计性能进行比较并得出了相应的结论。 展开更多
关键词 改进的自适应渐进 II 型删失 Chen 分布 EM 算法 共轭和非共轭的信息先验 大方差和遗传 算法 metropolis-hastings 算法 贝叶斯估计
下载PDF
Bayesian Study Using MCMC of Three-Parameter Frechet Distribution Based on Type-I Censored Data 被引量:2
6
作者 Al Omari Mohammed Ahmed 《Journal of Applied Mathematics and Physics》 2021年第2期220-232,共13页
Type-I censoring mechanism arises when the number of units experiencing the event is random but the total duration of the study is fixed. There are a number of mathematical approaches developed to handle this type of ... Type-I censoring mechanism arises when the number of units experiencing the event is random but the total duration of the study is fixed. There are a number of mathematical approaches developed to handle this type of data. The purpose of the research was to estimate the three parameters of the Frechet distribution via the frequentist Maximum Likelihood and the Bayesian Estimators. In this paper, the maximum likelihood method (MLE) is not available of the three parameters in the closed forms;therefore, it was solved by the numerical methods. Similarly, the Bayesian estimators are implemented using Jeffreys and gamma priors with two loss functions, which are: squared error loss function and Linear Exponential Loss Function (LINEX). The parameters of the Frechet distribution via Bayesian cannot be obtained analytically and therefore Markov Chain Monte Carlo is used, where the full conditional distribution for the three parameters is obtained via Metropolis-Hastings algorithm. Comparisons of the estimators are obtained using Mean Square Errors (MSE) to determine the best estimator of the three parameters of the Frechet distribution. The results show that the Bayesian estimation under Linear Exponential Loss Function based on Type-I censored data is a better estimator for all the parameter estimates when the value of the loss parameter is positive. 展开更多
关键词 Frechet Distribution Bayesian Method Type-I Censored Data Markov Chain Monte Carlo metropolis-hastings Algorithm
下载PDF
Robust Frequency Estimation Under Additive Symmetric α-Stable Gaussian Mixture Noise
7
作者 Peng Wang Yulu Tian +1 位作者 Bolong Men Hailong Song 《Intelligent Automation & Soft Computing》 SCIE 2023年第4期83-95,共13页
Here the estimating problem of a single sinusoidal signal in the additive symmetricα-stable Gaussian(ASαSG)noise is investigated.The ASαSG noise here is expressed as the additive of a Gaussian noise and a symmetric... Here the estimating problem of a single sinusoidal signal in the additive symmetricα-stable Gaussian(ASαSG)noise is investigated.The ASαSG noise here is expressed as the additive of a Gaussian noise and a symmetricα-stable distributed variable.As the probability density function(PDF)of the ASαSG is complicated,traditional estimators cannot provide optimum estimates.Based on the Metropolis-Hastings(M-H)sampling scheme,a robust frequency estimator is proposed for ASαSG noise.Moreover,to accelerate the convergence rate of the developed algorithm,a new criterion of reconstructing the proposal covar-iance is derived,whose main idea is updating the proposal variance using several previous samples drawn in each iteration.The approximation PDF of the ASαSG noise,which is referred to the weighted sum of a Voigt function and a Gaussian PDF,is also employed to reduce the computational complexity.The computer simulations show that the performance of our method is better than the maximum likelihood and the lp-norm estimators. 展开更多
关键词 Additive symmetricα-stable Gaussian mixture metropolis-hastings algorithm robust frequency estimation probability density function approximation
下载PDF
Comparison of the Sampling Efficiency in Spatial Autoregressive Model
8
作者 Yoshihiro Ohtsuka Kazuhiko Kakamu 《Open Journal of Statistics》 2015年第1期10-20,共11页
A random walk Metropolis-Hastings algorithm has been widely used in sampling the parameter of spatial interaction in spatial autoregressive model from a Bayesian point of view. In addition, as an alternative approach,... A random walk Metropolis-Hastings algorithm has been widely used in sampling the parameter of spatial interaction in spatial autoregressive model from a Bayesian point of view. In addition, as an alternative approach, the griddy Gibbs sampler is proposed by [1] and utilized by [2]. This paper proposes an acceptance-rejection Metropolis-Hastings algorithm as a third approach, and compares these three algorithms through Monte Carlo experiments. The experimental results show that the griddy Gibbs sampler is the most efficient algorithm among the algorithms whether the number of observations is small or not in terms of the computation time and the inefficiency factors. Moreover, it seems to work well when the size of grid is 100. 展开更多
关键词 Acceptance-Rejection metropolis-hastings ALGORITHM Griddy Gibbs SAMPLER Markov Chain Monte Carlo (MCMC) Random WALK metropolis-hastings ALGORITHM Spatial AUTOREGRESSIVE Model
下载PDF
Bayesian Inference on Type-Ⅰ Progressively Hybrid Competing Risks Model 被引量:1
9
作者 ZHANG Chun-fang Sill Yi-min WU Min 《Chinese Quarterly Journal of Mathematics》 2018年第2期122-131,共10页
In this paper, we construct a Bayesian framework combining Type-Ⅰ progressively hybrid censoring scheme and competing risks which are independently distributed as exponentiated Weibull distribution with one scale par... In this paper, we construct a Bayesian framework combining Type-Ⅰ progressively hybrid censoring scheme and competing risks which are independently distributed as exponentiated Weibull distribution with one scale parameter and two shape parameters. Since there exist unknown hyper-parameters in prior density functions of shape parameters, we consider the hierarchical priors to obtain the individual marginal posterior density functions,Bayesian estimates and highest posterior density credible intervals. As explicit expressions of estimates cannot be obtained, the componentwise updating algorithm of Metropolis-Hastings method is employed to compute the numerical results. Finally, it is concluded that Bayesian estimates have a good performance. 展开更多
关键词 Competing risks Hierarchical Bayesian inference Progressively hybrid censoring metropolis-hastings algorithm
下载PDF
Comparison of the Bayesian Methods on Interval-Censored Data for Weibull Distribution 被引量:1
10
作者 Al Omari Mohammed Ahmed 《Open Journal of Statistics》 2014年第8期570-577,共8页
This study considers the estimation of Maximum Likelihood Estimator and the Bayesian Estimator of the Weibull distribution with interval-censored data. The Bayesian estimation can’t be used to solve the parameters an... This study considers the estimation of Maximum Likelihood Estimator and the Bayesian Estimator of the Weibull distribution with interval-censored data. The Bayesian estimation can’t be used to solve the parameters analytically and therefore Markov Chain Monte Carlo is used, where the full conditional distribution for the scale and shape parameters are obtained via Metropolis-Hastings algorithm. Also Lindley’s approximation is used. The two methods are compared to maximum likelihood counterparts and the comparisons are made with respect to the mean square error (MSE) to determine the best for estimating of the scale and shape parameters. 展开更多
关键词 Weibull DISTRIBUTION BAYESIAN Method INTERVAL Censored metropolis-hastings Algorithm Lindley’s APPROXIMATION
下载PDF
A Bayesian Inference Approach to Reduce Uncertainty in Magnetotelluric Inversion: A Synthetic Case Study
11
作者 Osborne Kachaje Liangjun Yan Zhou Zhang 《Journal of Geoscience and Environment Protection》 2019年第2期62-75,共14页
The deterministic geophysical inversion methods are dominant when inverting magnetotelluric data whereby its results largely depends on the assumed initial model and only a single representative solution is obtained. ... The deterministic geophysical inversion methods are dominant when inverting magnetotelluric data whereby its results largely depends on the assumed initial model and only a single representative solution is obtained. A common problem to this approach is that all inversion techniques suffer from non-uniqueness since all model solutions are subjected to errors, under-determination and uncertainty. A statistical approach in nature is a possible solution to this problem as it can provide extensive information about unknown parameters. In this paper, we developed a 1D Bayesian inversion code based Metropolis-Hastings algorithm whereby the uncertainty of the earth model parameters were quantified by examining the posterior model distribution. As a test, we applied the inversion algorithm to synthetic model data obtained from available literature based on a three layer model (K, H, A and Q). The frequency for the magnetotelluric impedance data was generated from 0.01 to 100 Hz. A 5% Gaussian noise was added at each frequency in order to simulate errors to the synthetic results. The developed algorithm has been successfully applied to all types of models and results obtained have demonstrated a good compatibility with the initial synthetic model data. 展开更多
关键词 BAYESIAN INVERSION MAGNETOTELLURICS MCMC metropolis-hastings UNCERTAINTY
下载PDF
单指数模型的Bayes分析
12
作者 方丽婷 《北华大学学报(自然科学版)》 CAS 2010年第2期169-176,共8页
采用贝叶斯方法分析了单指数模型,该方法是通过Reversible Jump Markov Chain MonteCarlo技术(RJMCMC)来实现的.为了获得较快的运算法则,对误差方差和样条系数选取共轭的逆Gamma--正态先验分布,方便地获得其他未知量的边际后验分... 采用贝叶斯方法分析了单指数模型,该方法是通过Reversible Jump Markov Chain MonteCarlo技术(RJMCMC)来实现的.为了获得较快的运算法则,对误差方差和样条系数选取共轭的逆Gamma--正态先验分布,方便地获得其他未知量的边际后验分布并作为目标分布.为了实现从指数向量的条件后验分布中进行抽样的目的,另外设计了一个随机游动(Random Walk)Metropolis抽样器.应用所提议的方法分析了实际数据和例子. 展开更多
关键词 贝叶斯拟合 REVERSIBLE JUMP 变量的选取 B-SPLINE metropolishastings
下载PDF
Bayesian Analysis of the Behrens-Fisher Problem under a Gamma Prior
13
作者 Nengak Emmanuel Goltong Sani Ibrahim Doguwa 《Open Journal of Statistics》 2018年第6期902-914,共13页
Yin [1] has developed a new Bayesian measure of evidence for testing a point null hypothesis which agrees with the frequentist p-value thereby, solving Lindley’s paradox. Yin and Li [2] extended the methodology of Yi... Yin [1] has developed a new Bayesian measure of evidence for testing a point null hypothesis which agrees with the frequentist p-value thereby, solving Lindley’s paradox. Yin and Li [2] extended the methodology of Yin [1] to the case of the Behrens-Fisher problem by assigning Jeffreys’ independent prior to the nuisance parameters. In this paper, we were able to show both analytically and through the results from simulation studies that the methodology of Yin?[1] solves simultaneously, the Behrens-Fisher problem and Lindley’s paradox when a Gamma prior is assigned to the nuisance parameters. 展开更多
关键词 Behrens-Fisher PROBLEM Lindley’s PARADOX metropolis-hastings Algorithm INFORMATIVE PRIORS
下载PDF
Estimating GARCH Modeling Using Metropolis-Hastings Method in R
14
作者 Min Wang Yunshun Wu 《Open Journal of Statistics》 2018年第6期931-938,共8页
This paper mainly talks about a popular approach of volatility of a GARCH-type model in R, while the disturbances are independent and have identical Student-t distribution. It uses the Metropolis-Hastings method to pe... This paper mainly talks about a popular approach of volatility of a GARCH-type model in R, while the disturbances are independent and have identical Student-t distribution. It uses the Metropolis-Hastings method to perform the computations and gives the programs in details in R. 展开更多
关键词 Student’s t Distribution DEGREE of FREEDOM GARCH t Model R metropolis-hastings METHOD
下载PDF
On Analysis of the Behrens-Fisher Problem Based on Bayesian Evidence
15
作者 Nengak Emmanuel Goltong Sani Ibrahim Doguwa 《Open Journal of Statistics》 2019年第1期1-14,共14页
In this paper we have demonstrated the ability of the new Bayesian measure of evidence of Yin (2012, Computational Statistics, 27: 237-249) to solve both the Behrens-Fisher problem and Lindley's paradox. We have p... In this paper we have demonstrated the ability of the new Bayesian measure of evidence of Yin (2012, Computational Statistics, 27: 237-249) to solve both the Behrens-Fisher problem and Lindley's paradox. We have provided a general proof that for any prior which yields a linear combination of two independent t random variables as posterior distribution of the di erence of means, the new Bayesian measure of evidence given that prior will solve Lindleys' paradox thereby serving as a general proof for the works of Yin and Li (2014, Journal of Applied Mathematics, 2014(978691)) and Goltong?and Doguwa (2018, Open Journal of Statistics, 8: 902-914).?Using the Pareto prior as an example, we have shown by the use of?simulation results that the new Bayesian measure of evidence solves?Lindley's paradox. 展开更多
关键词 Behrens-Fisher PROBLEM Lindley's PARADOX metropolis-hastings Algorithm PARETO Prior t Distribution
下载PDF
Outlier Reconstruction Based Distribution System State Estimation Using Equivalent Model of Long Short-term Memory and Metropolis-Hastings Sampling 被引量:1
16
作者 Mingchao Xia Jinping Sun Qifang Chen 《Journal of Modern Power Systems and Clean Energy》 SCIE EI CSCD 2022年第6期1625-1636,共12页
The accuracy of distribution system state estimation(DDSE)is reduced when phasor measurement unit(PMU)measurements contain outliers because of cyber attacks or global positioning system spoofing attacks.Therefore,to e... The accuracy of distribution system state estimation(DDSE)is reduced when phasor measurement unit(PMU)measurements contain outliers because of cyber attacks or global positioning system spoofing attacks.Therefore,to enhance the robustness of DDSE to measurement outliers,approximate the target distribution of Metropolis-Hastings(MH)sampling,and judge the prediction of the long short-term memory(LSTM)network,this paper proposes an outlier reconstruction based state estimation method using the equivalent model of the LSTM network and MH sampling(E-LM model),motivated by the characteristics of the chronological correlations of PMU measurements.First,the target distribution of outlier reconstruction is derived using a kernel density estimation function.Subsequently,the reasons and advantages of the E-LM model are explained and analyzed from a mathematical point of view.The proposed LSTM-based MH sampling can approximate the target distribution of MH sampling to decrease the number of the futile iterations.Moreover,the proposed MH-based forecasting of the LSTM can judge each LSTM prediction,which is independent of its true value.Finally,simulations are conducted to evaluate the performance of the E-LM model by integrating the LSTM network and the MH sampling into the outlier reconstruction based DDSE. 展开更多
关键词 Distribution system state estimation(DDSE) outlier reconstruction phasor measurement unit(PMU) equivalent model long short-term memory(LSTM)network metropolis-hastings sampling
原文传递
基于高斯Sigma点选取的改进UPF算法 被引量:2
17
作者 曹洁 戴彬 李晓旭 《吉林大学学报(工学版)》 EI CAS CSCD 北大核心 2014年第5期1435-1440,共6页
针对标准粒子滤波存在的粒子退化现象,提出了一种改进的UPF算法。该算法采用基于高斯Sigma点选取的自适应无味卡尔曼滤波产生建议分布函数,然后利用MetropolisHastings(MH)方法优化粒子,提高了对系统后验概率密度的逼近程度。仿真结果表... 针对标准粒子滤波存在的粒子退化现象,提出了一种改进的UPF算法。该算法采用基于高斯Sigma点选取的自适应无味卡尔曼滤波产生建议分布函数,然后利用MetropolisHastings(MH)方法优化粒子,提高了对系统后验概率密度的逼近程度。仿真结果表明:改进算法降低了粒子滤波算法的粒子退化程度,提高了跟踪精度。 展开更多
关键词 计算机应用 粒子滤波 高斯Sigma点 无味卡尔曼滤波 MH方法
下载PDF
一种有效的粒子滤波器的改进算法
18
作者 薛亚茹 李明 《电子元器件应用》 2008年第5期71-73,77,共4页
为了解决粒子滤波算法中重采样后粒子中包含重复点过多,从而丧失了粒子的多样性等问题,文中在重采样后引入一个马尔可夫链蒙特卡罗(MCMC)移动步骤来增加粒子的多样性,因而能更好地近似状态的后验概率分布。
关键词 贝叶斯估计 粒子滤波 马尔可夫链蒙特卡罗(MCMC)步骤 metropolis-hastings 算法
下载PDF
Robust Frequency Estimation Under Additive Mixture Noise
19
作者 Yuan Chen Yulu Tian +2 位作者 Dingfan Zhang Longting Huang Jingxin Xu 《Computers, Materials & Continua》 SCIE EI 2022年第7期1671-1684,共14页
In many applications such as multiuser radar communications and astrophysical imaging processing,the encountered noise is usually described by the finite sum ofα-stable(1≤α<2)variables.In this paper,a new parame... In many applications such as multiuser radar communications and astrophysical imaging processing,the encountered noise is usually described by the finite sum ofα-stable(1≤α<2)variables.In this paper,a new parameter estimator is developed,in the presence of this new heavy-tailed noise.Since the closed-formPDF of theα-stable variable does not exist exceptα=1 andα=2,we take the sum of the Cauchy(α=1)and Gaussian(α=2)noise as an example,namely,additive Cauchy-Gaussian(ACG)noise.The probability density function(PDF)of the mixed random variable,can be calculated by the convolution of the Cauchy’s PDF and Gaussian’s PDF.Because of the complicated integral in the PDF expression of the ACG noise,traditional estimators,e.g.,maximum likelihood,are analytically not tractable.To obtain the optimal estimates,a new robust frequency estimator is devised by employing the Metropolis-Hastings(M-H)algorithm.Meanwhile,to guarantee the fast convergence of the M-H chain,a new proposal covariance criterion is also devised,where the batch of previous samples are utilized to iteratively update the proposal covariance in each sampling process.Computer simulations are carried out to indicate the superiority of the developed scheme,when compared with several conventional estimators and the Cramér-Rao lower bound. 展开更多
关键词 Frequency estimation additive cauchy-gaussian noise voigt profile metropolis-hastings algorithm cramér-rao lower bound
下载PDF
浅议马尔可夫链蒙特卡罗在实践中的应用
20
作者 孟庆一 《吉林省教育学院学报(中旬)》 2012年第12期120-121,共2页
本文概括地介绍了马尔可夫链蒙特卡罗(Markov chain Monte Carlo——MCMC),一种随机模拟贝叶斯推断的方法。主要的抽样方法包括吉布斯采样(Gibbs Sampling)和Metropolis-Hastings算法。本文也对MCMC主题和应用的拓展进行了讨论。
关键词 马尔可夫链 蒙特卡罗 GIBBS抽样 metropolishastings
下载PDF
上一页 1 2 9 下一页 到第
使用帮助 返回顶部