期刊文献+

Robust Frequency Estimation Under Additive Mixture Noise

下载PDF
导出
摘要 In many applications such as multiuser radar communications and astrophysical imaging processing,the encountered noise is usually described by the finite sum ofα-stable(1≤α<2)variables.In this paper,a new parameter estimator is developed,in the presence of this new heavy-tailed noise.Since the closed-formPDF of theα-stable variable does not exist exceptα=1 andα=2,we take the sum of the Cauchy(α=1)and Gaussian(α=2)noise as an example,namely,additive Cauchy-Gaussian(ACG)noise.The probability density function(PDF)of the mixed random variable,can be calculated by the convolution of the Cauchy’s PDF and Gaussian’s PDF.Because of the complicated integral in the PDF expression of the ACG noise,traditional estimators,e.g.,maximum likelihood,are analytically not tractable.To obtain the optimal estimates,a new robust frequency estimator is devised by employing the Metropolis-Hastings(M-H)algorithm.Meanwhile,to guarantee the fast convergence of the M-H chain,a new proposal covariance criterion is also devised,where the batch of previous samples are utilized to iteratively update the proposal covariance in each sampling process.Computer simulations are carried out to indicate the superiority of the developed scheme,when compared with several conventional estimators and the Cramér-Rao lower bound.
出处 《Computers, Materials & Continua》 SCIE EI 2022年第7期1671-1684,共14页 计算机、材料和连续体(英文)
基金 supported by National Natural Science Foundation of China(Grant No.52075397,61905184,61701021) Fundamental Research Funds for the Central Universities(Grant No.FRF-TP-19-006A3).
  • 相关文献

参考文献3

二级参考文献1

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部