We prove some approximation properties of generalized Meyer-Konig and Zeller operators for differentiable functions in polynomial weighted spaces. The results extend some results proved in [1-3,7-16].
In this paper, we derive the complete asymptotic expansion of classical Baskakov operators Vn (f;x) in the form of all coefficients of n^-k, k = 0, 1... being calculated explic- itly in terms of Stirling number of t...In this paper, we derive the complete asymptotic expansion of classical Baskakov operators Vn (f;x) in the form of all coefficients of n^-k, k = 0, 1... being calculated explic- itly in terms of Stirling number of the first and second kind and another number G(i, p). As a corollary, we also get the Voronovskaja-type result for the operators.展开更多
In this paper we give a strong converse inequality of type B in terms of unified K-functional Kλα (f, t2) (0 ≤λ≤ 1, 0 〈 α 〈 2) for the Meyer-Knig and Zeller-Durrmeyer type operators.
In the present note we give the correct and improved estimate on the rate of convergence of integrated Meyer-Konig and Zetter operators for function of bounded variation.
The Meyer-König and Zeller operator is one of the most challenging operators. Sometimes the study of its properties will rely on the weighted approximation by Baskakov operator. In this paper, this relation i...The Meyer-König and Zeller operator is one of the most challenging operators. Sometimes the study of its properties will rely on the weighted approximation by Baskakov operator. In this paper, this relation is extended to complex space;the quantitative estimates and the Voronovskaja type results for analytic functions by complex Meyer-König and Zeller operators were obtained.展开更多
文摘We prove some approximation properties of generalized Meyer-Konig and Zeller operators for differentiable functions in polynomial weighted spaces. The results extend some results proved in [1-3,7-16].
基金Supported by the Natural Science Foundation of Beijing(1072006)
文摘In this paper, we derive the complete asymptotic expansion of classical Baskakov operators Vn (f;x) in the form of all coefficients of n^-k, k = 0, 1... being calculated explic- itly in terms of Stirling number of the first and second kind and another number G(i, p). As a corollary, we also get the Voronovskaja-type result for the operators.
基金The NSF (10571040) of ChinaNSF (L2010Z02) of Hebei Normal University
文摘In this paper we give a strong converse inequality of type B in terms of unified K-functional Kλα (f, t2) (0 ≤λ≤ 1, 0 〈 α 〈 2) for the Meyer-Knig and Zeller-Durrmeyer type operators.
文摘In the present note we give the correct and improved estimate on the rate of convergence of integrated Meyer-Konig and Zetter operators for function of bounded variation.
基金NSF of China (11571089, 11871191) NSF of Hebei Province (2012205028+1 种基金 ZD2019053) Science foundation of Hebei Normal University
文摘The Meyer-König and Zeller operator is one of the most challenging operators. Sometimes the study of its properties will rely on the weighted approximation by Baskakov operator. In this paper, this relation is extended to complex space;the quantitative estimates and the Voronovskaja type results for analytic functions by complex Meyer-König and Zeller operators were obtained.