A transient measurement technique by using narrow-band thermochromic liquid crystal (TLC) is employed to determine temperature and heat transfer coefficient (HTC) distribution on inner surfaces of the typical lami...A transient measurement technique by using narrow-band thermochromic liquid crystal (TLC) is employed to determine temperature and heat transfer coefficient (HTC) distribution on inner surfaces of the typical lamilloy configurations. With this technique, both local HTC distribution and average HTC distribution could be obtained. The experimental results indicate that the variation of the porosity ratio, the one that the area of impingement holes divided by that of the plate, has a great effect on the HTC distribution on the inner surfaces. Heat exchange of inner surfaces varies directly as the porosity ratio. The impingement Reynolds number ranges from 20 000 to 50 000. The average HTC of inner surfaces bears a linear relationship with the Reynolds number.展开更多
文摘A transient measurement technique by using narrow-band thermochromic liquid crystal (TLC) is employed to determine temperature and heat transfer coefficient (HTC) distribution on inner surfaces of the typical lamilloy configurations. With this technique, both local HTC distribution and average HTC distribution could be obtained. The experimental results indicate that the variation of the porosity ratio, the one that the area of impingement holes divided by that of the plate, has a great effect on the HTC distribution on the inner surfaces. Heat exchange of inner surfaces varies directly as the porosity ratio. The impingement Reynolds number ranges from 20 000 to 50 000. The average HTC of inner surfaces bears a linear relationship with the Reynolds number.