The radical hypothesis concerning the physics of gravitational black-body radiation is placed on a more solid statistical mechanics foundation in this study. As the concepts and formalism in the former presentation ar...The radical hypothesis concerning the physics of gravitational black-body radiation is placed on a more solid statistical mechanics foundation in this study. As the concepts and formalism in the former presentation are only partially developed and furthermore, suffer from an unfortunate misstep regarding Hawking radiation and the hypothetical gravitational black-body temperature of a parcel or distribution of energy;this paper aims to fill in some of the theoretical gaps in the derivation of the Planck radiation formula for gravity (or non-Euclidean space-time), and there by provide a more complete and transparent quantum theory of thermal gravitational radiation.展开更多
Vera Rubin measured the rotational speeds of galaxies, Ref. [1] 1983, and she found that the masses of galaxies were not enough to produce the measured speeds of rotation. Therefore, it was inferred that there must be...Vera Rubin measured the rotational speeds of galaxies, Ref. [1] 1983, and she found that the masses of galaxies were not enough to produce the measured speeds of rotation. Therefore, it was inferred that there must be an unknown matter which is many times the known visible and dark matter. In this study, the solution to the dark matter mystery of spiral galaxies is a four-dimensional mass in the space of four distance dimensions, coordinates: x,y,z,x', in which x' is the fourth distance dimension. The four-dimensional mass is a black hole, and it generates the main gravitation field of the galaxy. This mysterious black hole is located in the fourth dimension at the distance x' = X'. The rotational speed distribution curves of the galaxy NGC 3198 have been presented in Ref. [2]. The speed distribution curve of the galactic halo in that publication corresponds to the speed distribution curve of the four-dimensional black hole in this study. In order to find out how well this four-dimensional model functions, the speed distribution curve of the four-dimensional black hole was calculated, and it was compared with the halo curve of Ref. [2]. The conclusion was that the calculated speed distribution curve of the black hole was a good match to the halo curve of Ref. [2]. Furthermore, the rotational speed distribution curves of the four-dimensional black hole were calculated by using different values of the reduced distance X', which yielded at the distance X' = 0 a black hole of radius R = 7.7 × 10<sup>17</sup> m. By using the relativistic Lorentz transformation, it was shown in this study that a star falling into the four-dimensional black hole remains rotating it at near speed of light, and cannot fall into the actual black hole.展开更多
A physical description of the orbital mechanics of stars around a galactic core has proved difficult. Notably, there is insufficient mass to account for observed star velocities. The mystery is one of few in modern sc...A physical description of the orbital mechanics of stars around a galactic core has proved difficult. Notably, there is insufficient mass to account for observed star velocities. The mystery is one of few in modern science that defy the known laws of physics. It has been conjectured that there is a new form of matter that interacts gravitationally while otherwise remaining undetectable. In this paper we resolve the mystery. The expressions do not modify the known laws of physics, contain no free variables or fitting and are entirely classical in nature. Using the notion of counts of the fundamental measures—length, mass and time—it is shown that measure is bounded. Accounting for this bound and the expansion of space reveal that the conjecture is unnecessary thus resolving the dark matter mystery.展开更多
This study contains the solution of the dark matter mystery of spiral galaxies by using the space of four distance dimensions <i><span>x</span></i><span>, </span><i><span&g...This study contains the solution of the dark matter mystery of spiral galaxies by using the space of four distance dimensions <i><span>x</span></i><span>, </span><i><span>y</span></i><span>, </span><i><span>z</span></i><span>, </span><i><span>x</span></i><i><span>'</span></i><span "=""><span>, in which </span><i><span>x</span></i></span><i><span>'</span></i><span "=""><span> is the fourth distance dimension. The calculation of galaxy rotation has been presented in the space of four dimensions by using two dimensional section </span><i><span>x</span></i><span>, </span><i><span>x</span></i></span><i><span>'</span></i><span "=""><span> and three dimensional section </span><i><span>x</span></i><span>, </span><i><span>y</span></i><span>, </span><i><span>x</span></i></span><i><span>'</span></i><span "=""><span>. The four dimensional mass </span><i><span>M</span></i><span> which generates the main gravitation field of galaxy is located at the fourth dimension at the distance </span><i><span>x</span></i></span><i><span>'</span></i><span "=""><span> = </span><i><span>X</span></i></span><i><span>'</span></i><span "=""><span> and other dimensions are zero </span><i><span>x</span></i><span> = 0, </span><i><span>y</span></i><span> = 0, </span><i><span>z</span></i><span> = 0. The method to calculate the speed distribution curve of four dimensional mass </span><i><span>V</span><sub><span>M</span></sub></i><span>: the speed distribution curve </span><i><span>V</span><sub><span>M</span></sub> </i><span>is calculated by using the equation in which the gravitational force is equal to the centrifugal force </span></span><span "=""><span>of rotation. The solution of this equation yields the speed distribution</span><span> component </span><i><span>V</span><sub><span>M</span></sub></i><span> of the four dimensional mass </span><i><span>M</span></i><span> and the value of the mass </span><i><span>M.</span></i><span> In the publication </span></span><span>[1]</span><span "=""><span> has been presented rotational speed distributions curv展开更多
The standard model is considered to be very bad at predicting galaxy rotation, and this is why the hypothesis of dark matter was introduced in physics in the 20th century. However, in this paper, we show that the stan...The standard model is considered to be very bad at predicting galaxy rotation, and this is why the hypothesis of dark matter was introduced in physics in the 20th century. However, in this paper, we show that the standard model may not be as far off as previously believed. By taking into account that gravity has an “infinite” extent in space and assessing the assumed mass in the observable universe, we obtain a minimum acceleration that gives a much closer match to observed galaxy rotations than would be expected. We will discuss whether or not this is enough to overturn the long-standing perspective on the standard model and if it could indeed provide a possible and adequate explanation of galaxy rotations.展开更多
A novel model of gravity is proposed and developed by modifying general relativity through propagating the gravitational field in an entirely analogous way to that of electromagnetic fields. It is therefore not a pure...A novel model of gravity is proposed and developed by modifying general relativity through propagating the gravitational field in an entirely analogous way to that of electromagnetic fields. It is therefore not a purely geometric model of gravitation, but is self-consistent, having clear causality and has the benefit of being inherently compatible with unified field theories. This model reproduces the observed almost constant rotational velocities of many galaxies as well as other large scale non-Keplerian motion. This is achieved without assuming the existence of dark matter and is made possible by modelling a rapidly rotating central star which with the inclusion of a velocity induced Doppler shift (of gravity) generates a highly anisotropic and intense, sheet like gravitational field. At extremely high gravitational fields this model remains real and finite i.e. does not generate a black hole, instead it asymptotically approaches a field limit below which light may escape. This is due to the inclusion of self-interaction of gravity in vacuum leading to a non-li nearity in the propagation of gravitational energy i.e. the effects of a gravitational field upon itself. This model is implemented computationally using an iterative finite element model. On the scale of our solar system these corrections are small and are shown not to be in obvious disagreement with high precision solar system tests.展开更多
The observed rotation curves of low surface brightness(LSB)galaxies play an essential role in studying dark matter,and indicate the existence of a central constant density dark matter core.However,the cosmological N-b...The observed rotation curves of low surface brightness(LSB)galaxies play an essential role in studying dark matter,and indicate the existence of a central constant density dark matter core.However,the cosmological N-body simulations of cold dark matter predict an inner cusped halo with a power-law mass density distribution,and cannot reproduce a central constant-density core.This phenomenon is called cusp-core problem.When dark matter is quiescent and satisfies the condition for hydrostatic equilibrium,the equation of state can be adopted to obtain the density profile in the static and spherically symmetric space-time.To address the cusp-core problem,we assume that the equation of state is independent of the scaling transformation.Its lower order approximation for this type of equation of state can naturally lead to a special case,i.e.,■,where p andρrepresent the pressure and density,respectively,V_(rot) depicts the rotation velocity of galaxy,andζandεare positive constants.It can obtain a density profile that is similar to the pseudo-isothermal halo model whenεis approximately 0.15.To obtain a more universally used model,let the equation of state include the polytropic model,i.e.■,from which we can obtain other types of density profiles,such as the profile that is nearly same as the Burkert profile,where s and ρ_(0) are positive constants.展开更多
We emphasize the effects of several factors on halo mass for our Galaxy,such as the disk thickness,the local surface density,and the shape of the rotation curve.By fitting the observed rotation curve of our Galaxy wit...We emphasize the effects of several factors on halo mass for our Galaxy,such as the disk thickness,the local surface density,and the shape of the rotation curve.By fitting the observed rotation curve of our Galaxy with the five-component model,we deduce a halo with a mass of 6.62×10^(11)M■within 50kpc and a local density of 0.009M■pc^(-3).It is found that the realistic Galaxy needs only about half of the halo mass that the Galaxy with an inGnitesmally thin disk requires.展开更多
With the rapid development of observational technology, the observable distance has extended to 1010 light years, far away from the earth. In the observable space, as many as 109 galaxies have been discerned. The stru...With the rapid development of observational technology, the observable distance has extended to 1010 light years, far away from the earth. In the observable space, as many as 109 galaxies have been discerned. The structure and morphology of the galaxies differ greatly from one another. Nevertheless, many of their geometric and dynamic parameters and a few of the relations among these parameters have been determined by astronomical observations. The important parameters and some of their relations are as follows. (ⅰ) There is red shift in the spectrum of every one of the galaxies observed. The relation between the red shift Z and the distance R of a galaxy,展开更多
Supermassive DEOs (SMDEOs) are cosmologically evolved objects made of irreducible incompressible supranuclear dense superfluids: The state we consider to govern the matter inside the cores of massive neutron stars. Th...Supermassive DEOs (SMDEOs) are cosmologically evolved objects made of irreducible incompressible supranuclear dense superfluids: The state we consider to govern the matter inside the cores of massive neutron stars. These cores are practically trapped in false vacua, rendering their detection by outside observers impossible. Based on massive parallel computations and theoretical investigations, we show that SMDEOs at the centres of spiral galaxies that are surrounded by massive rotating torii of normal matter may serve as powerful sources for gravitational waves carrying away roughly 1042 erg/s. Due to the extensive cooling by GWs, the SMDEO-Torus systems undergo glitching, through which both rotational and gravitational energies are abruptly ejected into the ambient media, during which the topologies of the embedding spacetimes change from curved into flatter ones, thereby triggering a burst gravitational energy of order 1059 erg. Also, the effects of glitches found to alter the force balance of objects in the Lagrangian-L1 region between the central SMDEO-Torus system and the bulge, enforcing the enclosed objects to develop violent motions, that may explain the origin of the rotational curve irregularities observed in the innermost part of spiral galaxies. Our study shows that the generated GWs at the centres of galaxies, which traverse billions of objects during their outward propagations throughout the entire galaxy, lose energy due to repeatedly squeezing and stretching the objects. Here, we find that these interactions may serve as damping processes that give rise to the formation of collective forces f∝m(r)/r, that point outward, endowing the objects with the observed flat rotation curves. Our approach predicts a correlation between the baryonic mass and the rotation velocities in galaxies, which is in line with the Tully-Fisher relation. The here-presented self-consistent approach explains nicely the observed rotation curves without invoking dark matter or modifying Newtonian gravitation in the low-field展开更多
Observed spiral galaxy rotation curves allow a measurement of the warm dark matter particle velocity dispersion and mass. The measured thermal relic mass m<sub>h </sub>≈100 eV is in disagreement ...Observed spiral galaxy rotation curves allow a measurement of the warm dark matter particle velocity dispersion and mass. The measured thermal relic mass m<sub>h </sub>≈100 eV is in disagreement with limits, typically in the range 1 to 4 keV. We review the measurements, update the no freeze-in and no freeze-out scenario of warm dark matter, and try to identify the cause of the discrepancies between measurements and limits.展开更多
文摘The radical hypothesis concerning the physics of gravitational black-body radiation is placed on a more solid statistical mechanics foundation in this study. As the concepts and formalism in the former presentation are only partially developed and furthermore, suffer from an unfortunate misstep regarding Hawking radiation and the hypothetical gravitational black-body temperature of a parcel or distribution of energy;this paper aims to fill in some of the theoretical gaps in the derivation of the Planck radiation formula for gravity (or non-Euclidean space-time), and there by provide a more complete and transparent quantum theory of thermal gravitational radiation.
文摘Vera Rubin measured the rotational speeds of galaxies, Ref. [1] 1983, and she found that the masses of galaxies were not enough to produce the measured speeds of rotation. Therefore, it was inferred that there must be an unknown matter which is many times the known visible and dark matter. In this study, the solution to the dark matter mystery of spiral galaxies is a four-dimensional mass in the space of four distance dimensions, coordinates: x,y,z,x', in which x' is the fourth distance dimension. The four-dimensional mass is a black hole, and it generates the main gravitation field of the galaxy. This mysterious black hole is located in the fourth dimension at the distance x' = X'. The rotational speed distribution curves of the galaxy NGC 3198 have been presented in Ref. [2]. The speed distribution curve of the galactic halo in that publication corresponds to the speed distribution curve of the four-dimensional black hole in this study. In order to find out how well this four-dimensional model functions, the speed distribution curve of the four-dimensional black hole was calculated, and it was compared with the halo curve of Ref. [2]. The conclusion was that the calculated speed distribution curve of the black hole was a good match to the halo curve of Ref. [2]. Furthermore, the rotational speed distribution curves of the four-dimensional black hole were calculated by using different values of the reduced distance X', which yielded at the distance X' = 0 a black hole of radius R = 7.7 × 10<sup>17</sup> m. By using the relativistic Lorentz transformation, it was shown in this study that a star falling into the four-dimensional black hole remains rotating it at near speed of light, and cannot fall into the actual black hole.
文摘A physical description of the orbital mechanics of stars around a galactic core has proved difficult. Notably, there is insufficient mass to account for observed star velocities. The mystery is one of few in modern science that defy the known laws of physics. It has been conjectured that there is a new form of matter that interacts gravitationally while otherwise remaining undetectable. In this paper we resolve the mystery. The expressions do not modify the known laws of physics, contain no free variables or fitting and are entirely classical in nature. Using the notion of counts of the fundamental measures—length, mass and time—it is shown that measure is bounded. Accounting for this bound and the expansion of space reveal that the conjecture is unnecessary thus resolving the dark matter mystery.
文摘This study contains the solution of the dark matter mystery of spiral galaxies by using the space of four distance dimensions <i><span>x</span></i><span>, </span><i><span>y</span></i><span>, </span><i><span>z</span></i><span>, </span><i><span>x</span></i><i><span>'</span></i><span "=""><span>, in which </span><i><span>x</span></i></span><i><span>'</span></i><span "=""><span> is the fourth distance dimension. The calculation of galaxy rotation has been presented in the space of four dimensions by using two dimensional section </span><i><span>x</span></i><span>, </span><i><span>x</span></i></span><i><span>'</span></i><span "=""><span> and three dimensional section </span><i><span>x</span></i><span>, </span><i><span>y</span></i><span>, </span><i><span>x</span></i></span><i><span>'</span></i><span "=""><span>. The four dimensional mass </span><i><span>M</span></i><span> which generates the main gravitation field of galaxy is located at the fourth dimension at the distance </span><i><span>x</span></i></span><i><span>'</span></i><span "=""><span> = </span><i><span>X</span></i></span><i><span>'</span></i><span "=""><span> and other dimensions are zero </span><i><span>x</span></i><span> = 0, </span><i><span>y</span></i><span> = 0, </span><i><span>z</span></i><span> = 0. The method to calculate the speed distribution curve of four dimensional mass </span><i><span>V</span><sub><span>M</span></sub></i><span>: the speed distribution curve </span><i><span>V</span><sub><span>M</span></sub> </i><span>is calculated by using the equation in which the gravitational force is equal to the centrifugal force </span></span><span "=""><span>of rotation. The solution of this equation yields the speed distribution</span><span> component </span><i><span>V</span><sub><span>M</span></sub></i><span> of the four dimensional mass </span><i><span>M</span></i><span> and the value of the mass </span><i><span>M.</span></i><span> In the publication </span></span><span>[1]</span><span "=""><span> has been presented rotational speed distributions curv
文摘The standard model is considered to be very bad at predicting galaxy rotation, and this is why the hypothesis of dark matter was introduced in physics in the 20th century. However, in this paper, we show that the standard model may not be as far off as previously believed. By taking into account that gravity has an “infinite” extent in space and assessing the assumed mass in the observable universe, we obtain a minimum acceleration that gives a much closer match to observed galaxy rotations than would be expected. We will discuss whether or not this is enough to overturn the long-standing perspective on the standard model and if it could indeed provide a possible and adequate explanation of galaxy rotations.
文摘A novel model of gravity is proposed and developed by modifying general relativity through propagating the gravitational field in an entirely analogous way to that of electromagnetic fields. It is therefore not a purely geometric model of gravitation, but is self-consistent, having clear causality and has the benefit of being inherently compatible with unified field theories. This model reproduces the observed almost constant rotational velocities of many galaxies as well as other large scale non-Keplerian motion. This is achieved without assuming the existence of dark matter and is made possible by modelling a rapidly rotating central star which with the inclusion of a velocity induced Doppler shift (of gravity) generates a highly anisotropic and intense, sheet like gravitational field. At extremely high gravitational fields this model remains real and finite i.e. does not generate a black hole, instead it asymptotically approaches a field limit below which light may escape. This is due to the inclusion of self-interaction of gravity in vacuum leading to a non-li nearity in the propagation of gravitational energy i.e. the effects of a gravitational field upon itself. This model is implemented computationally using an iterative finite element model. On the scale of our solar system these corrections are small and are shown not to be in obvious disagreement with high precision solar system tests.
基金Supported by the National Natural Science Foundation(NSF)of China(11973081,11573062,11403092,11390374,11521303)the YIPACAS Foundation(2012048)+2 种基金the Chinese Academy of Sciences(CAS,KJZD-EW-M06-01)the NSF of Yunnan Province(2019FB006)the Youth Project of Western Light of CAS。
文摘The observed rotation curves of low surface brightness(LSB)galaxies play an essential role in studying dark matter,and indicate the existence of a central constant density dark matter core.However,the cosmological N-body simulations of cold dark matter predict an inner cusped halo with a power-law mass density distribution,and cannot reproduce a central constant-density core.This phenomenon is called cusp-core problem.When dark matter is quiescent and satisfies the condition for hydrostatic equilibrium,the equation of state can be adopted to obtain the density profile in the static and spherically symmetric space-time.To address the cusp-core problem,we assume that the equation of state is independent of the scaling transformation.Its lower order approximation for this type of equation of state can naturally lead to a special case,i.e.,■,where p andρrepresent the pressure and density,respectively,V_(rot) depicts the rotation velocity of galaxy,andζandεare positive constants.It can obtain a density profile that is similar to the pseudo-isothermal halo model whenεis approximately 0.15.To obtain a more universally used model,let the equation of state include the polytropic model,i.e.■,from which we can obtain other types of density profiles,such as the profile that is nearly same as the Burkert profile,where s and ρ_(0) are positive constants.
基金Supported by the National Natural Science Foundation of China under Grant No.19873005the Doctoral Programme Foundation of State Education Commission of China(9528424)the National Climbing Project in Fundamental Researches.
文摘We emphasize the effects of several factors on halo mass for our Galaxy,such as the disk thickness,the local surface density,and the shape of the rotation curve.By fitting the observed rotation curve of our Galaxy with the five-component model,we deduce a halo with a mass of 6.62×10^(11)M■within 50kpc and a local density of 0.009M■pc^(-3).It is found that the realistic Galaxy needs only about half of the halo mass that the Galaxy with an inGnitesmally thin disk requires.
文摘With the rapid development of observational technology, the observable distance has extended to 1010 light years, far away from the earth. In the observable space, as many as 109 galaxies have been discerned. The structure and morphology of the galaxies differ greatly from one another. Nevertheless, many of their geometric and dynamic parameters and a few of the relations among these parameters have been determined by astronomical observations. The important parameters and some of their relations are as follows. (ⅰ) There is red shift in the spectrum of every one of the galaxies observed. The relation between the red shift Z and the distance R of a galaxy,
文摘Supermassive DEOs (SMDEOs) are cosmologically evolved objects made of irreducible incompressible supranuclear dense superfluids: The state we consider to govern the matter inside the cores of massive neutron stars. These cores are practically trapped in false vacua, rendering their detection by outside observers impossible. Based on massive parallel computations and theoretical investigations, we show that SMDEOs at the centres of spiral galaxies that are surrounded by massive rotating torii of normal matter may serve as powerful sources for gravitational waves carrying away roughly 1042 erg/s. Due to the extensive cooling by GWs, the SMDEO-Torus systems undergo glitching, through which both rotational and gravitational energies are abruptly ejected into the ambient media, during which the topologies of the embedding spacetimes change from curved into flatter ones, thereby triggering a burst gravitational energy of order 1059 erg. Also, the effects of glitches found to alter the force balance of objects in the Lagrangian-L1 region between the central SMDEO-Torus system and the bulge, enforcing the enclosed objects to develop violent motions, that may explain the origin of the rotational curve irregularities observed in the innermost part of spiral galaxies. Our study shows that the generated GWs at the centres of galaxies, which traverse billions of objects during their outward propagations throughout the entire galaxy, lose energy due to repeatedly squeezing and stretching the objects. Here, we find that these interactions may serve as damping processes that give rise to the formation of collective forces f∝m(r)/r, that point outward, endowing the objects with the observed flat rotation curves. Our approach predicts a correlation between the baryonic mass and the rotation velocities in galaxies, which is in line with the Tully-Fisher relation. The here-presented self-consistent approach explains nicely the observed rotation curves without invoking dark matter or modifying Newtonian gravitation in the low-field
文摘Observed spiral galaxy rotation curves allow a measurement of the warm dark matter particle velocity dispersion and mass. The measured thermal relic mass m<sub>h </sub>≈100 eV is in disagreement with limits, typically in the range 1 to 4 keV. We review the measurements, update the no freeze-in and no freeze-out scenario of warm dark matter, and try to identify the cause of the discrepancies between measurements and limits.