摘要
The standard model is considered to be very bad at predicting galaxy rotation, and this is why the hypothesis of dark matter was introduced in physics in the 20th century. However, in this paper, we show that the standard model may not be as far off as previously believed. By taking into account that gravity has an “infinite” extent in space and assessing the assumed mass in the observable universe, we obtain a minimum acceleration that gives a much closer match to observed galaxy rotations than would be expected. We will discuss whether or not this is enough to overturn the long-standing perspective on the standard model and if it could indeed provide a possible and adequate explanation of galaxy rotations.
The standard model is considered to be very bad at predicting galaxy rotation, and this is why the hypothesis of dark matter was introduced in physics in the 20th century. However, in this paper, we show that the standard model may not be as far off as previously believed. By taking into account that gravity has an “infinite” extent in space and assessing the assumed mass in the observable universe, we obtain a minimum acceleration that gives a much closer match to observed galaxy rotations than would be expected. We will discuss whether or not this is enough to overturn the long-standing perspective on the standard model and if it could indeed provide a possible and adequate explanation of galaxy rotations.
作者
Espen Gaarder Haug
Espen Gaarder Haug(Norwegian University of Life Sciences, Ås, Norway)