There are two infrared beamlines at the Shanghai synchrotron radiation facility(SSRF)-BL01B and BL06B.BL01B was the first infrared beamline of the National Facility for Protein Science in Shanghai at SSRF,which is ded...There are two infrared beamlines at the Shanghai synchrotron radiation facility(SSRF)-BL01B and BL06B.BL01B was the first infrared beamline of the National Facility for Protein Science in Shanghai at SSRF,which is dedicated to synchrotron infrared microspectroscopy.It utilizes bending magnet radiation and edge radiation as light sources.Diffraction-limited spatial resolution is reached in the infrared microspectroscopy experiment.BL01B has been in operation for approximately five years since it opened in January 2015.In the past few years,many meaningful results have been published by user groups from various disciplines,such as biomacromolecule materials and pharmaceutical,environmental,and biomedical sciences.In addition,a new infrared beamline station BL06B is under construction,which is optimized for the mid-infrared and far-infrared band.BL06B is equipped with a vacuum-type Fourier transform infrared spectrometer,infrared microscope,custom longworking-distance infrared microscope,infrared scanning near-field optical microscope,and mid-infrared Mueller ellipsometer.The purpose is to serve experiments with high vacuum requirements and spatial resolution experiments,as well as those that are in situ and time-sensitive,such as high-pressure and atomic force microscopy infrared experiments.The station can be used for research in biomaterials,pharmacy,geophysics,nanotechnology,and semiconductor materials.展开更多
The anatomical and chemical characteristics of a rolling leaf mutant (rlm) of rice (Oryza sativa L.) and its ecophysiological properties in photosynthesis and apoplastic transport were investigated. Compared with ...The anatomical and chemical characteristics of a rolling leaf mutant (rlm) of rice (Oryza sativa L.) and its ecophysiological properties in photosynthesis and apoplastic transport were investigated. Compared with the wild type (WT), the areas of whole vascular bundles and xylem as well as the ratios of xylem area/whole vascular bundles area and xylem area/phloem area were higher in rim, whereas the area and the width of foliar bulliform cell were lower. The Fourier transform infrared (FTIR) microspectroscopy spectra of foliar cell walls differed greatly between rim and WT. The rim exhibited lower protein and polysaccharide contents of foliar cell walls. An obvious reduction of pectin content was also found in rim by biochemical measurements. Moreover, the rate of photosynthesis was depressed while the conductance of stoma and the intercellular CO2 concentration were enhanced in rim. The PTS fluorescence, which represents the ability of apoplastic transport, was 11% higher in rim than in WT. These results suggest that the changes in anatomical and chemical characteristics of foliar vascular bundles, such as the reduction of proteins, pectins, and other polysaccharides of foliar cell walls, participate in the leaf rolling mutation, and consequently lead to the reduced photosynthetic dynamics and apoplastic transport ability in the mutant.展开更多
基金supported by the National Natural Science Foundation of China(Nos.U1732130,U1632273,11505267,and 11605281)
文摘There are two infrared beamlines at the Shanghai synchrotron radiation facility(SSRF)-BL01B and BL06B.BL01B was the first infrared beamline of the National Facility for Protein Science in Shanghai at SSRF,which is dedicated to synchrotron infrared microspectroscopy.It utilizes bending magnet radiation and edge radiation as light sources.Diffraction-limited spatial resolution is reached in the infrared microspectroscopy experiment.BL01B has been in operation for approximately five years since it opened in January 2015.In the past few years,many meaningful results have been published by user groups from various disciplines,such as biomacromolecule materials and pharmaceutical,environmental,and biomedical sciences.In addition,a new infrared beamline station BL06B is under construction,which is optimized for the mid-infrared and far-infrared band.BL06B is equipped with a vacuum-type Fourier transform infrared spectrometer,infrared microscope,custom longworking-distance infrared microscope,infrared scanning near-field optical microscope,and mid-infrared Mueller ellipsometer.The purpose is to serve experiments with high vacuum requirements and spatial resolution experiments,as well as those that are in situ and time-sensitive,such as high-pressure and atomic force microscopy infrared experiments.The station can be used for research in biomaterials,pharmacy,geophysics,nanotechnology,and semiconductor materials.
基金supported by the National Natural Science Foundation of China (Grant No. 30470274)the Zhejiang Natural Science Foundation of China (Grant No. Y306087)the Zijin Program of Zhejiang University for Young Teachers, China.
文摘The anatomical and chemical characteristics of a rolling leaf mutant (rlm) of rice (Oryza sativa L.) and its ecophysiological properties in photosynthesis and apoplastic transport were investigated. Compared with the wild type (WT), the areas of whole vascular bundles and xylem as well as the ratios of xylem area/whole vascular bundles area and xylem area/phloem area were higher in rim, whereas the area and the width of foliar bulliform cell were lower. The Fourier transform infrared (FTIR) microspectroscopy spectra of foliar cell walls differed greatly between rim and WT. The rim exhibited lower protein and polysaccharide contents of foliar cell walls. An obvious reduction of pectin content was also found in rim by biochemical measurements. Moreover, the rate of photosynthesis was depressed while the conductance of stoma and the intercellular CO2 concentration were enhanced in rim. The PTS fluorescence, which represents the ability of apoplastic transport, was 11% higher in rim than in WT. These results suggest that the changes in anatomical and chemical characteristics of foliar vascular bundles, such as the reduction of proteins, pectins, and other polysaccharides of foliar cell walls, participate in the leaf rolling mutation, and consequently lead to the reduced photosynthetic dynamics and apoplastic transport ability in the mutant.