In this paper the topology of a four-leg shunt active-power filter (APF) is given. The APF compensates har-monic and reactive power in a three-phase four-wire system. The scheme adopted for control of the four-leg act...In this paper the topology of a four-leg shunt active-power filter (APF) is given. The APF compensates har-monic and reactive power in a three-phase four-wire system. The scheme adopted for control of the four-leg active power filter,a 3-Dimensional Pulse Width Modulation (PWM) technique,is presented. The theoretical deduction of a space vector PWM (SVPWM) algorithm is given in this paper. The paper also analyzes the distribution of the volt-age-space vector of the four-leg converter in αβγ coordinates and describes methods to determine the location of the voltage-space vector and to calculate duration time. Finally,the algorithm is implemented in simulation; the results show that the total harmonic distortion (THD) of the three phase-current waveforms is reduced. The neutral wire current,after compensation,is about 0 A showing that the topology of the four-leg shunt APF is feasible and the proposed scheme is effective.展开更多
针对锂电池LIB(Lithium-ion pack)组非四线制状态下的线压降补偿问题,提出了一种锂电池组充放电过程中电压实时采样校正新方法。该方法通过分析锂电池组充放电过程中线压降机制,研究各单体处于不同充放电组合状态时对采样的影响,实现对...针对锂电池LIB(Lithium-ion pack)组非四线制状态下的线压降补偿问题,提出了一种锂电池组充放电过程中电压实时采样校正新方法。该方法通过分析锂电池组充放电过程中线压降机制,研究各单体处于不同充放电组合状态时对采样的影响,实现对锂电池组电压信号实时有效监测。实验结果表明,在锂电池组工作状态下电压采样过程中,该方法能够有效解决非四线制锂电池组电压采样问题,采样电压与锂电池组单体实际电压差异在5 m V以内。所提出的非四线制线压降补偿方法能够有效解决锂电池组实时准确采样问题,能够准确表征锂电池组实际工作状态。展开更多
The electric networks for the distribution to low voltage costumers can be configured in different layouts. Two main approaches are used: the European system composed by three-phase distribution transformers or the No...The electric networks for the distribution to low voltage costumers can be configured in different layouts. Two main approaches are used: the European system composed by three-phase distribution transformers or the North American system composed by single-phase distribution transformers and three-phase transformer banks of single-phase transformers. With respect to harmonic analysis, much more attention has been focused on the three-phase balanced systems arrangements than on the unbalanced four-wire delta system extensively used to supply low voltage loads of 120/240 V. Different authors have shown the three-phase power systems modeling on a phase-coordinates frame. However, the presence of significant asymmetries in the network forces the need of adding a new phase-coordinates model to represent the three-phase transformers banks of two or three single-phase transformers in its various connections. Several papers treat the use of harmonic analysis programs based on a phase-coordinates frame to study the Wye or Delta connected three-phase systems. However, the commonly used four-wire delta connected systems are not fully treated in literature. This paper presents a phase-coordinates model for the representation of the commonly used three-phase transformer banks of three or two single-phase transformers, and single-phase distribution transformers for the harmonic analysis of the four-wire delta connected systems. The harmonic analysis method based on the presented model is used to examine the characteristics of this kind of distribution system with respect to the penetration of harmonics currents from loads to the primary system.展开更多
For three phase four-wire active power filters (APFs), several typical power theories and corresponding current reference generation strategies are induced, p-q, d-q, unify power factor (UPF) and instantaneous act...For three phase four-wire active power filters (APFs), several typical power theories and corresponding current reference generation strategies are induced, p-q, d-q, unify power factor (UPF) and instantaneous active current (IAC) methods are analyzed and compared with each other. The interpretation of active and reactive currents in non-sinusoidal and unbalanced three-phase four-wire systems is given based on the generalized instantaneous reactive power theory. The performance and the characteristic are evaluated, and the application conditions of current reference generation strategies are concluded. Simulation results under different source voltages and loads verify the evaluation result.展开更多
Low voltage three-phase four-wire AC distribution grids may experience high neutral current,mainly caused by asymmetrical distribution of single-phase loads in three phases.High neutral current will not only increase ...Low voltage three-phase four-wire AC distribution grids may experience high neutral current,mainly caused by asymmetrical distribution of single-phase loads in three phases.High neutral current will not only increase line losses but also result in neutral potential variations.For the LV AC distribution grid established by a grid-forming inverter(e.g.,uninterruptible power supply and solid-state-transformer),it also suffers from the same neutral current issues.Therefore,this paper comparatively studies several neutral current control approaches and their impacts on grid voltage balance,which is required by grid code.Then,this paper proposes an optimal neutral current control approach,which can obtain maximum neutral current suppression with less impact on grid voltage balance.The correctness of the theoretical analysis is validated through both simulation and experimental results.展开更多
文摘In this paper the topology of a four-leg shunt active-power filter (APF) is given. The APF compensates har-monic and reactive power in a three-phase four-wire system. The scheme adopted for control of the four-leg active power filter,a 3-Dimensional Pulse Width Modulation (PWM) technique,is presented. The theoretical deduction of a space vector PWM (SVPWM) algorithm is given in this paper. The paper also analyzes the distribution of the volt-age-space vector of the four-leg converter in αβγ coordinates and describes methods to determine the location of the voltage-space vector and to calculate duration time. Finally,the algorithm is implemented in simulation; the results show that the total harmonic distortion (THD) of the three phase-current waveforms is reduced. The neutral wire current,after compensation,is about 0 A showing that the topology of the four-leg shunt APF is feasible and the proposed scheme is effective.
文摘针对锂电池LIB(Lithium-ion pack)组非四线制状态下的线压降补偿问题,提出了一种锂电池组充放电过程中电压实时采样校正新方法。该方法通过分析锂电池组充放电过程中线压降机制,研究各单体处于不同充放电组合状态时对采样的影响,实现对锂电池组电压信号实时有效监测。实验结果表明,在锂电池组工作状态下电压采样过程中,该方法能够有效解决非四线制锂电池组电压采样问题,采样电压与锂电池组单体实际电压差异在5 m V以内。所提出的非四线制线压降补偿方法能够有效解决锂电池组实时准确采样问题,能够准确表征锂电池组实际工作状态。
文摘The electric networks for the distribution to low voltage costumers can be configured in different layouts. Two main approaches are used: the European system composed by three-phase distribution transformers or the North American system composed by single-phase distribution transformers and three-phase transformer banks of single-phase transformers. With respect to harmonic analysis, much more attention has been focused on the three-phase balanced systems arrangements than on the unbalanced four-wire delta system extensively used to supply low voltage loads of 120/240 V. Different authors have shown the three-phase power systems modeling on a phase-coordinates frame. However, the presence of significant asymmetries in the network forces the need of adding a new phase-coordinates model to represent the three-phase transformers banks of two or three single-phase transformers in its various connections. Several papers treat the use of harmonic analysis programs based on a phase-coordinates frame to study the Wye or Delta connected three-phase systems. However, the commonly used four-wire delta connected systems are not fully treated in literature. This paper presents a phase-coordinates model for the representation of the commonly used three-phase transformer banks of three or two single-phase transformers, and single-phase distribution transformers for the harmonic analysis of the four-wire delta connected systems. The harmonic analysis method based on the presented model is used to examine the characteristics of this kind of distribution system with respect to the penetration of harmonics currents from loads to the primary system.
文摘For three phase four-wire active power filters (APFs), several typical power theories and corresponding current reference generation strategies are induced, p-q, d-q, unify power factor (UPF) and instantaneous active current (IAC) methods are analyzed and compared with each other. The interpretation of active and reactive currents in non-sinusoidal and unbalanced three-phase four-wire systems is given based on the generalized instantaneous reactive power theory. The performance and the characteristic are evaluated, and the application conditions of current reference generation strategies are concluded. Simulation results under different source voltages and loads verify the evaluation result.
基金the National Natural Science Foundation of China(NSFC)under Grant 51767017National Science and Technology Major Project of Gansu Province under Grant 19ZD2GA003.
文摘Low voltage three-phase four-wire AC distribution grids may experience high neutral current,mainly caused by asymmetrical distribution of single-phase loads in three phases.High neutral current will not only increase line losses but also result in neutral potential variations.For the LV AC distribution grid established by a grid-forming inverter(e.g.,uninterruptible power supply and solid-state-transformer),it also suffers from the same neutral current issues.Therefore,this paper comparatively studies several neutral current control approaches and their impacts on grid voltage balance,which is required by grid code.Then,this paper proposes an optimal neutral current control approach,which can obtain maximum neutral current suppression with less impact on grid voltage balance.The correctness of the theoretical analysis is validated through both simulation and experimental results.