An FeOx‐based Pt single‐atom catalyst(SAC),Pt1/FeOx,has stimulated significant recent interest owing to its extraordinary activity toward CO oxidation.The concept of SAC has also been successfully extended to other ...An FeOx‐based Pt single‐atom catalyst(SAC),Pt1/FeOx,has stimulated significant recent interest owing to its extraordinary activity toward CO oxidation.The concept of SAC has also been successfully extended to other FeOx supported transition metal systems both experimentally and theoretically.However,the FeOx substrate itself(denoted by Fe1/FeOx following the same nomenclature of Pt1/FeOx)as a typical transition metal oxide possesses a very low catalytic activity toward CO oxidation,although it can be viewed as Fe1/FeOx SAC.Here,to understand the catalytic mechanism of FeOx‐based SACs for CO oxidation,we have performed density functional theory calculations on Pt1/FeOx and Fe1/FeOx for CO oxidation to address the differences between these two SACs in terms of the catalytic mechanism of CO oxidation and the chemical behavior of the catalysts.Our calculation results indicated that the catalytic cycle of Fe1/FeOx is much more difficult to accomplish than that of SAC Pt1/FeOx because of a high activation barrier(1.09eV)for regeneration of the oxygen vacancy formed when the second CO2molecule desorbs from the surface.Moreover,density of states and Bader charge analysis revealed differences in the catalytic performance for CO oxidation by the SACs Fe1/FeOx and Pt1/FeOx.This work provides insights into the fundamental interactions between the single‐atom Pt1and FeOx substrate,and the exceptional catalytic performance of this system for CO oxidation.展开更多
The present study explored a new method to improve the catalytic activity of non-precious metals, especially in electrochemical reactions. Highly ionized Fe plasma produced by arc discharge was uniformly deposited on ...The present study explored a new method to improve the catalytic activity of non-precious metals, especially in electrochemical reactions. Highly ionized Fe plasma produced by arc discharge was uniformly deposited on a porous carbon substrate and formed atomic clusters on the carbon surface. The as-prepared FeO~/C material was tested as a cathode material in a rechargeable Li-02 battery under different current rates. The results showed significant improvement in battery performance in terms of both cycle life and reaction rate. Furthermore, X-ray diffraction (XRD) and scanning electron microscopy (SEM) results showed that the as-prepared cathode material stabilized the cathode and reduced side reactions and that the current rate was a critical factor in the nucleation of the discharge products.展开更多
A high temperature equilibration experiment was carried out to investigate the effect of oxygen partial pres- sure on the phase equilibria and liquidus in CaO-Al2O3- FeOx system with the intermediate oxygen partial pr...A high temperature equilibration experiment was carried out to investigate the effect of oxygen partial pres- sure on the phase equilibria and liquidus in CaO-Al2O3- FeOx system with the intermediate oxygen partial pressures of 10.13 Pa and 1.01 × 10^-3 Pa. The equilibrated phases and their compositions of the quenched samples were analyzed by using SEM/EPMA (Scanning Electron Microscope/Electron Probe Micro Analysis) and XRD (X Ray Diffraction). The phase equilibrium results include two cases, the two phase coexistence and the three-phase coexistence in the high Al2O3 region with oxygen partial pressure of either 10.13 Pa or 1.01 × 10^-3 Pa. Effects of oxygen partial pressure and temperature on the liquidus along the primary phase fields of CaO · Al2O3 and CaO · 2Al2O3 were nota hle. With the decrease of oxygen partial pressure, the liquid area expands and the liquidus of CaO · Al2O3 and CaO · 2Al2O3 primary fields moves to the Al2O3-FeOx region. On the other hand, the liquid area of CaO Al2O3-FeOx sys tem extends extremely to the high Al2O3 region with the temperature increasing from 1 400 to 1 500℃, especially at lower oxygen partial pressure. The present experiment results are in good agreement with the calculated ones by FactSage.展开更多
FeOx electrocatalysts for the oxygen reduction reaction were prepared via one-step synthesis using electron impact with cold plasma as the electron source.Given the low operation temperature,FeOx by plasma technology ...FeOx electrocatalysts for the oxygen reduction reaction were prepared via one-step synthesis using electron impact with cold plasma as the electron source.Given the low operation temperature,FeOx by plasma technology showed a smaller particle size than that prepared via conventional calcination.Notably,electron impact produced more oxygen vacancies and a larger surface area on FeOx,which increased active sites and electronic conductivity,than plasma.Electrochemical investigations indicated that FeOx prepared by plasma exhibited remarkable oxygen reduction reaction activity toward the four-electron electrochemical reduction of oxygen.The results demonstrated that this facile fabrication method is a promising route for developing cost-eff ective and high-performance catalysts to be used in electrochemical applications.展开更多
Hydrogen generation from formic acid (FA) has received significant attention. The challenge is to obtain a highly active catalyst under mild conditions for practical applications. Here atomic layer deposition (ALD...Hydrogen generation from formic acid (FA) has received significant attention. The challenge is to obtain a highly active catalyst under mild conditions for practical applications. Here atomic layer deposition (ALD) of FeOx was performed to deposit an ultrathin oxide coating layer to a Pd/C catalyst, therein the FeOx coverage was precisely controlled by ALD cycles. Transmission electron microscopy and powder X-ray diffraction measurements suggest that the FeOx coating layer improved the thermal stability of Pd nanoparticles (NPs). X-ray photoelectron spectroscopy measurement showed that deposition of FeOx on the Pd NPs caused a positive shift of Pd3d binding energy. In the FA dehydrogenation reaction, the ultrathin FeOx layer on the Pd/C could considerably improve the catalytic activity, and Pd/C coated with 8 cycles of FeOx showed an optimized activity with turnover frequency being about 2 times higher than the uncoated one. shape as a function of the number of FeOx ALD The improved activities were in a volcanocycles, indicating the coverage of FeOx is critical for the optimized activity. In summary, simultaneous improvements of activity and thermal stability of Pd/C catalyst by ultra-thin FeOx overlayer suggest to be an effective way to design active catalysts for the FA dehydrogenation reaction.展开更多
A single-atom catalyst (SAC) that was first proposed by us in 2011 has aroused significant recent interest. Among the various SACs, FeOx-based ones including Pt1/FeOx, Ir1/FeOx, Au1/FeOx, Ni1/FeOx, and Fe1/FeOx have...A single-atom catalyst (SAC) that was first proposed by us in 2011 has aroused significant recent interest. Among the various SACs, FeOx-based ones including Pt1/FeOx, Ir1/FeOx, Au1/FeOx, Ni1/FeOx, and Fe1/FeOx have been investigated either experimentally or theoretically for CO oxidation. However, a systematic study of FeO,-based SACs has not been conducted. For a comprehensive understanding of FeOx-supported single-metal-atom catalysts, extensive density functional theory calculations were carried out on the activities and catalytic mechanisms of SACs with the 3d, 4d, and 5d metals of group VIII to IB, i.e., M1/FeOx (M = Fe, Co, Ni, Cu; Ru, Rh, Pd, Ag; Os, Ir, Pt, Au) for CO oxidation. Remarkably, a new noble metal SAC, Pd1/FeOx, with high activity in CO oxidation was found and is predicted to be even better than the previously reported Pt1/FeOx and Ni1/FeOx. In comparison, other M1/FeOx SACs (M = Fe, Co, Cu; Ru, Rh, Ag; Os, Ir, Au) showed only low activities in CO oxidation. Moreover, the adsorption strength of CO on the single-atom active sites was found to be the key in determining the catalytic activity of these SACs for CO oxidation, because it governs the recoverability of oxygen vacancies on their surfaces in the formation of a second CO2 during CO oxidation. Our systematic studies of FeOx-supported SACs will help in understanding the fundamental mechanisms of the interactions between singly dispersed surface metal atoms and FeOx substrate and in designing highly active FeOx-supported SACs.展开更多
Catalytic properties of MnOx-FeOx complex oxide (hereafter denoted as Mn-Fe) catalysts modified with different loadings of chromium oxide were investigated by using the combination of physico-cbemical techniques, su...Catalytic properties of MnOx-FeOx complex oxide (hereafter denoted as Mn-Fe) catalysts modified with different loadings of chromium oxide were investigated by using the combination of physico-cbemical techniques, such as N2 physisorption, X-ray diffraction (XRD), high-resolution transmission electron microscope (HRTEM), in situ Fourier transform infrared spectroscopy (in situ FT-IR) and temperature-programmed reduction (TPR) and their catalytic activities were evaluated with the selective catalytic reduction (SCR) of NOx by NH3. It was found that with the addition of Cr, more NO could be removed in the low-temperature window (below 120 ℃). Among the tested catalysts, Mn-Fe- Cr (2 : 2 : 1) catalyst exhibited the best catalytic performance at 80 ℃ with the NO conversion higher than 90%. The combination of the reaction and characterization results indicated that (1) the strong interaction among tertiary metal oxides existed in the catalysts when Cr was appropriately added, which made the active components better dispersed with less agglomeration and sintering and the largest BET specific surface area could be obtained; (2) Cr improved the low-temperature reducibility of the catalyst and promoted the formation of the active intermediate (-NH3+), which favored the low-temperature SCR reaction.展开更多
A PtFe/C catalyst has been synthesized by impregnation and high-temperature reduction followed by acid-leaching. X-ray diffraction, X-ray photoelectron spectroscopy and X-ray atomic near edge spectroscopy characteriza...A PtFe/C catalyst has been synthesized by impregnation and high-temperature reduction followed by acid-leaching. X-ray diffraction, X-ray photoelectron spectroscopy and X-ray atomic near edge spectroscopy characterization reveal that PtgFe alloy formation occurs during high-temperature reduction and that unstable Fe species are dissolved into acid solution. The difference in Fe concentration from the core region to the surface and strong O-Fe bonding may drive the outward diffusion of Fe to the highly corrugated Pt-skeleton, and the resulting highly dispersed surface FeOx is stable in acidic medium, leading to the construction of a PtBFe@Pt-FeOx architecture. The as prepared PtFe/C catalyst demonstrates a higher activity and comparable durability for the oxygen reduction reaction compared with a Pt/C catalyst, which might be due to the synergetic effect of surface and subsurface Fe species in the PtFe/C catalyst.展开更多
基金supported by the National Natural Science Foundation of China(21503046,21373206,21203182)the National Basic Research Program of China(2013CB834603)+3 种基金the Natural Science Foundation of Guizhou Province of China(QKJ(2015)2122)Natural Science foundation of Department of Education of Guizhou Province(QJTD(2015)55 and ZDXK(2014)18)the GZEU startup packagethe Open Fund of Shaanxi Key Laboratory of Catalysis to JXL(SXKLC-2017-01)~~
文摘An FeOx‐based Pt single‐atom catalyst(SAC),Pt1/FeOx,has stimulated significant recent interest owing to its extraordinary activity toward CO oxidation.The concept of SAC has also been successfully extended to other FeOx supported transition metal systems both experimentally and theoretically.However,the FeOx substrate itself(denoted by Fe1/FeOx following the same nomenclature of Pt1/FeOx)as a typical transition metal oxide possesses a very low catalytic activity toward CO oxidation,although it can be viewed as Fe1/FeOx SAC.Here,to understand the catalytic mechanism of FeOx‐based SACs for CO oxidation,we have performed density functional theory calculations on Pt1/FeOx and Fe1/FeOx for CO oxidation to address the differences between these two SACs in terms of the catalytic mechanism of CO oxidation and the chemical behavior of the catalysts.Our calculation results indicated that the catalytic cycle of Fe1/FeOx is much more difficult to accomplish than that of SAC Pt1/FeOx because of a high activation barrier(1.09eV)for regeneration of the oxygen vacancy formed when the second CO2molecule desorbs from the surface.Moreover,density of states and Bader charge analysis revealed differences in the catalytic performance for CO oxidation by the SACs Fe1/FeOx and Pt1/FeOx.This work provides insights into the fundamental interactions between the single‐atom Pt1and FeOx substrate,and the exceptional catalytic performance of this system for CO oxidation.
文摘The present study explored a new method to improve the catalytic activity of non-precious metals, especially in electrochemical reactions. Highly ionized Fe plasma produced by arc discharge was uniformly deposited on a porous carbon substrate and formed atomic clusters on the carbon surface. The as-prepared FeO~/C material was tested as a cathode material in a rechargeable Li-02 battery under different current rates. The results showed significant improvement in battery performance in terms of both cycle life and reaction rate. Furthermore, X-ray diffraction (XRD) and scanning electron microscopy (SEM) results showed that the as-prepared cathode material stabilized the cathode and reduced side reactions and that the current rate was a critical factor in the nucleation of the discharge products.
基金Item Sponsored by National Natural Science Foundation of China(50974034,51074039)
文摘A high temperature equilibration experiment was carried out to investigate the effect of oxygen partial pres- sure on the phase equilibria and liquidus in CaO-Al2O3- FeOx system with the intermediate oxygen partial pressures of 10.13 Pa and 1.01 × 10^-3 Pa. The equilibrated phases and their compositions of the quenched samples were analyzed by using SEM/EPMA (Scanning Electron Microscope/Electron Probe Micro Analysis) and XRD (X Ray Diffraction). The phase equilibrium results include two cases, the two phase coexistence and the three-phase coexistence in the high Al2O3 region with oxygen partial pressure of either 10.13 Pa or 1.01 × 10^-3 Pa. Effects of oxygen partial pressure and temperature on the liquidus along the primary phase fields of CaO · Al2O3 and CaO · 2Al2O3 were nota hle. With the decrease of oxygen partial pressure, the liquid area expands and the liquidus of CaO · Al2O3 and CaO · 2Al2O3 primary fields moves to the Al2O3-FeOx region. On the other hand, the liquid area of CaO Al2O3-FeOx sys tem extends extremely to the high Al2O3 region with the temperature increasing from 1 400 to 1 500℃, especially at lower oxygen partial pressure. The present experiment results are in good agreement with the calculated ones by FactSage.
基金by the National Key Research and Development Program of China(No.2016YFF0102503)National Natural Science Foundation of China(No.21878214)State Key Laboratory of Efficient Utilization for Low Grade Phosphate Rock and Its Associated Resources(No.WFKF2019-03).
文摘FeOx electrocatalysts for the oxygen reduction reaction were prepared via one-step synthesis using electron impact with cold plasma as the electron source.Given the low operation temperature,FeOx by plasma technology showed a smaller particle size than that prepared via conventional calcination.Notably,electron impact produced more oxygen vacancies and a larger surface area on FeOx,which increased active sites and electronic conductivity,than plasma.Electrochemical investigations indicated that FeOx prepared by plasma exhibited remarkable oxygen reduction reaction activity toward the four-electron electrochemical reduction of oxygen.The results demonstrated that this facile fabrication method is a promising route for developing cost-eff ective and high-performance catalysts to be used in electrochemical applications.
基金This work was supported by the National Natural Science Foundation of China (No.51402283 and No.21473169), One Thousand Young Talents Program under the Recruitment Program of Global Experts, the Fundamental Research Funds for the Central Universi- ties (No.WK2060030017), and the Startup Funds from University of Science and Technology of China.
文摘Hydrogen generation from formic acid (FA) has received significant attention. The challenge is to obtain a highly active catalyst under mild conditions for practical applications. Here atomic layer deposition (ALD) of FeOx was performed to deposit an ultrathin oxide coating layer to a Pd/C catalyst, therein the FeOx coverage was precisely controlled by ALD cycles. Transmission electron microscopy and powder X-ray diffraction measurements suggest that the FeOx coating layer improved the thermal stability of Pd nanoparticles (NPs). X-ray photoelectron spectroscopy measurement showed that deposition of FeOx on the Pd NPs caused a positive shift of Pd3d binding energy. In the FA dehydrogenation reaction, the ultrathin FeOx layer on the Pd/C could considerably improve the catalytic activity, and Pd/C coated with 8 cycles of FeOx showed an optimized activity with turnover frequency being about 2 times higher than the uncoated one. shape as a function of the number of FeOx ALD The improved activities were in a volcanocycles, indicating the coverage of FeOx is critical for the optimized activity. In summary, simultaneous improvements of activity and thermal stability of Pd/C catalyst by ultra-thin FeOx overlayer suggest to be an effective way to design active catalysts for the FA dehydrogenation reaction.
基金We acknowledge simulating discussion with Professor Qingfeng Ge. This work was supported by the National Natural Science Foundation of China (Nos. 21590792, 91645203, and 21521091 to J. L. 21503046 to J. X. L. and 21203182 to X. F. Y.), and National Basic Research Program of China (No. 2013CB834603 to J. L.), Natural Science Foundation of Guizhou Province of China (No. QKJ[201512122), Natural Science foundation of Department of Education of Guizhou Province (Nos. QJTD[2015155 and ZDXK[2014]18) and the GZEU start up package. The calculations were done using supercomputers at Tsinghua National Laboratory for Information Science and Technology, the State Key Laboratory of Physical Chemistry of Solid Surfaces (Xiamen University), and Guizhou Provincial High- Performance Computing Center of Condensed Materials and Molecular Simulation. This project is partially supported by the Open Fund of Shaanxi Key Laboratory of Catalysis to J. X. L. (No. SXKLC-2017-01).
文摘A single-atom catalyst (SAC) that was first proposed by us in 2011 has aroused significant recent interest. Among the various SACs, FeOx-based ones including Pt1/FeOx, Ir1/FeOx, Au1/FeOx, Ni1/FeOx, and Fe1/FeOx have been investigated either experimentally or theoretically for CO oxidation. However, a systematic study of FeO,-based SACs has not been conducted. For a comprehensive understanding of FeOx-supported single-metal-atom catalysts, extensive density functional theory calculations were carried out on the activities and catalytic mechanisms of SACs with the 3d, 4d, and 5d metals of group VIII to IB, i.e., M1/FeOx (M = Fe, Co, Ni, Cu; Ru, Rh, Pd, Ag; Os, Ir, Pt, Au) for CO oxidation. Remarkably, a new noble metal SAC, Pd1/FeOx, with high activity in CO oxidation was found and is predicted to be even better than the previously reported Pt1/FeOx and Ni1/FeOx. In comparison, other M1/FeOx SACs (M = Fe, Co, Cu; Ru, Rh, Ag; Os, Ir, Au) showed only low activities in CO oxidation. Moreover, the adsorption strength of CO on the single-atom active sites was found to be the key in determining the catalytic activity of these SACs for CO oxidation, because it governs the recoverability of oxygen vacancies on their surfaces in the formation of a second CO2 during CO oxidation. Our systematic studies of FeOx-supported SACs will help in understanding the fundamental mechanisms of the interactions between singly dispersed surface metal atoms and FeOx substrate and in designing highly active FeOx-supported SACs.
基金supported by Jiangsu Natural Science Foundation (No. BK2012347)the National High Technology and Development Program of China (863 Programs, No.2007AA061802)
文摘Catalytic properties of MnOx-FeOx complex oxide (hereafter denoted as Mn-Fe) catalysts modified with different loadings of chromium oxide were investigated by using the combination of physico-cbemical techniques, such as N2 physisorption, X-ray diffraction (XRD), high-resolution transmission electron microscope (HRTEM), in situ Fourier transform infrared spectroscopy (in situ FT-IR) and temperature-programmed reduction (TPR) and their catalytic activities were evaluated with the selective catalytic reduction (SCR) of NOx by NH3. It was found that with the addition of Cr, more NO could be removed in the low-temperature window (below 120 ℃). Among the tested catalysts, Mn-Fe- Cr (2 : 2 : 1) catalyst exhibited the best catalytic performance at 80 ℃ with the NO conversion higher than 90%. The combination of the reaction and characterization results indicated that (1) the strong interaction among tertiary metal oxides existed in the catalysts when Cr was appropriately added, which made the active components better dispersed with less agglomeration and sintering and the largest BET specific surface area could be obtained; (2) Cr improved the low-temperature reducibility of the catalyst and promoted the formation of the active intermediate (-NH3+), which favored the low-temperature SCR reaction.
基金This work was financially supported by the Ministry of Science and Technology of China (Grants 2012CB215500 and 2013CB933100) and the National Natural Science Foundation of China (Grants 21103178 and 21033009).
文摘A PtFe/C catalyst has been synthesized by impregnation and high-temperature reduction followed by acid-leaching. X-ray diffraction, X-ray photoelectron spectroscopy and X-ray atomic near edge spectroscopy characterization reveal that PtgFe alloy formation occurs during high-temperature reduction and that unstable Fe species are dissolved into acid solution. The difference in Fe concentration from the core region to the surface and strong O-Fe bonding may drive the outward diffusion of Fe to the highly corrugated Pt-skeleton, and the resulting highly dispersed surface FeOx is stable in acidic medium, leading to the construction of a PtBFe@Pt-FeOx architecture. The as prepared PtFe/C catalyst demonstrates a higher activity and comparable durability for the oxygen reduction reaction compared with a Pt/C catalyst, which might be due to the synergetic effect of surface and subsurface Fe species in the PtFe/C catalyst.