The influence of Er_2 O_3 addition on the phase evolution and mechanical properties of sintered(1600 ℃,4 h) ZTA(yttria stabilized zirconia toughened alumina)-TiO_2 composites was investigated. The SEM and XRD results...The influence of Er_2 O_3 addition on the phase evolution and mechanical properties of sintered(1600 ℃,4 h) ZTA(yttria stabilized zirconia toughened alumina)-TiO_2 composites was investigated. The SEM and XRD results reveal the formation of a new erbium zirconium oxide,Zr_3 Er_4 O_(12),with a granulate morphology when Er_2 O_3 content is higher than 1 wt%. The grain sizes of both Al_2 O_3 and yttria-stabilized zirconia phases decrease with an increase in the Er_2 O_3 content. The relative density, Vickers hardness and fracture toughness of the composites are found to be strongly dependent on their grain sizes, relative densities and the formation of the Zr_3 Er_4 O_(12) secondary phases. The composite with 5 wt% Er_2 O_3 shows the highest relative density(99.93%), Vickers hardness(1752 HV) and fracture toughness(7.92 MPa·m^(1/2)).展开更多
The doping effects of rare earth oxides Ho_2O_3 and Er_2O_3 on dielectric properties of BaTiO_3-based ceramics were studied. After adding rare earth elements, grain growth in this system was inhibited and the grain si...The doping effects of rare earth oxides Ho_2O_3 and Er_2O_3 on dielectric properties of BaTiO_3-based ceramics were studied. After adding rare earth elements, grain growth in this system was inhibited and the grain size was reduced evidently which realized the fine-grained effect. In this system, the trivalent oxides Ho_2O_3 and Er_2O_3 were added to BaTiO_3 ceramics. The rare earth oxides do not enter into inner lattice totally to replace A or B sites. Some of additives can improve dielectric strength by forming nonferroelectric phases, and the rest maintained at grain boundaries controls overgrowth of grains. The dielectric constant at room temperature is increased up to 3000 and the curve of TCC becomes flat. Meanwhile, the dielectric strength E_b becomes higher.展开更多
导模法是一种超高熔点晶体的有效生长方法,可以生长高质量、大尺寸、高掺杂的Er:Lu_(2)O_(3)晶体。本文测试了导模法生长的Er:Lu_(2)O_(3)晶体的荧光发射谱及连续激光特性,在室温下获得了斜效率为23.1%的2.85μm连续激光输出,最高输出功...导模法是一种超高熔点晶体的有效生长方法,可以生长高质量、大尺寸、高掺杂的Er:Lu_(2)O_(3)晶体。本文测试了导模法生长的Er:Lu_(2)O_(3)晶体的荧光发射谱及连续激光特性,在室温下获得了斜效率为23.1%的2.85μm连续激光输出,最高输出功率5.24 W。80 min功率RMS(Root mean square)稳定性优于1.4%,不同输出功率水平的激光光束质量M^(2)因子优于2.17。实验结果表明,导模法生长的Er:Lu_(2)O_(3)激光晶体具备输出高功率、高效率中红外激光的能力。展开更多
Er_(x)Ti_(0.1)Zr_(0.9-x)O_(2-1.5 x)(x=0.04,0.05,0.06,0.07,0.08) ceramics were synthesized by a solid-state reaction method.The influence of the Er^(3+) addition on the phase composition,Vickers hardness,fracture tough...Er_(x)Ti_(0.1)Zr_(0.9-x)O_(2-1.5 x)(x=0.04,0.05,0.06,0.07,0.08) ceramics were synthesized by a solid-state reaction method.The influence of the Er^(3+) addition on the phase composition,Vickers hardness,fracture toughness,and thermal conductivity of this ceramic material was investigated.The X-ray diffraction results reveal that the c-ZrO_(2) content increases from 1.85 vol% to 33.89 vol%,and the percentage of t-ZrO_(2) decreases from 98.15 vol% to 66.11 vol% with the increase in Er^(3+) content from 4 mol% to 8 mol%.Moreover,the addition of Er^(3+) is beneficial to the volume expansion of the unit cell.At the same time,the incorporation of Er^(3+) weakens the coordination of oxygen ions around the metal cations,resulting in a corresponding decrease in the tetragonality of the t-ZrO_(2).The Vickers hardness and fracture toughness of the Er_(x)Ti_(0.1)Zr_(0.9-x)O_(2-1.5)_(x) ceramics show increasing and decreasing trends,respectively.The thermal conductivity has a significant decline due to point defects caused by the Er^(3+) doping.The 8 ETZ ceramic exhibits the highest Vickers hardness(12.7 GPa),the lowest fracture toughness(7.6 MPa·m^(1/2)),and the lowest average thermal conductivity(1.85 W/(m·K)) in the temperature range of 200-1000℃.All of the above properties are higher than those of the Y_(2)O_(3)-stabilized ZrO_(2) ceramic.展开更多
The present research investigated the effect of reduced graphene oxide(rGO) integration with assynthesized Er_(2)O_(3)/ZnO nanocomposites on dielectric properties. The samples were characterized by Xray diffraction(XR...The present research investigated the effect of reduced graphene oxide(rGO) integration with assynthesized Er_(2)O_(3)/ZnO nanocomposites on dielectric properties. The samples were characterized by Xray diffraction(XRD), Fourier transform infrared spectroscopy(FTIR), scanning electron microscopy(SEM), diffuse reflectance spectroscopy(DRS), and energy dispersive spectroscopy(EDS). Complex impedance spectroscopy was utilized to characterize dielectric relaxation phenomena in Er_(2)O_(3)/ZnO and Er_(2)O_(3)/ZnO/rGO nanocomposites. All the samples exhibit single relaxation phenomena which are ascribed to grain boundaries. The addition of rGO to Er_(2)O_(3)/ZnO nanocomposite results in the enhancement of dielectric response due to increased local field intensity caused by the formation of conductinginsulating interfaces. Furthermore, the AC conductivity of the Er_(2)O_(3)/ZnO/rGO is increased at higher frequencies due to the presence of free charge carriers in rGO. At higher frequencies, Er_(2)O_(3)/ZnO/rGO nanocomposite with increased concentration of ZnO exhibits a more stable dielectric constant with extremely low dielectric loss. Hence, the inclusion of rGO in Er_(2)O_(3)/ZnO nanocomposites makes it a novel prospective candidate in the field of energy storage devices.展开更多
In the present computational study,we found that Er:Lu_(2)O_(3)materials have promise for application in laser applications.The crystal structure and the electronic and optical properties of Er:Lu_(2)O_(3)materials we...In the present computational study,we found that Er:Lu_(2)O_(3)materials have promise for application in laser applications.The crystal structure and the electronic and optical properties of Er:Lu_(2)O_(3)materials were studied using first-principle calculations under the framework of density functional theory.Based on the experimental and calculated results,the structure of Lu_(2)O_(3)was established.The calculated results show that doping by Er^(3+)can effectively improve its absorption coefficient in the ultraviolet region and improve the static dielectric constant of Lu_(2)O_(3).As the doping concentration of Er^(3+)increases,the energy of the valence band electrons excited to the conduction band decreases,and the transition is more likely to occur.The absorption coefficient,reflectance,and electron energy loss spectroscopy are bathochromic shifted.The Lu_(2-x)Er_(x)O_(3)(0<x<0.09375)system still retains a low absorption coefficient reflectance in the mid-infrared and visible regions.Our calculations therefore show that rare earth doping can effectively regulate the electronic structure and optical properties of Lu_(2)O_(3).展开更多
The possibility of utilizing thorium as a fuel in a pressurized water reactor(PWR)has been proven from the neutronic perspective in our previously published work without assessing the thermal hydraulic(TH)and solid st...The possibility of utilizing thorium as a fuel in a pressurized water reactor(PWR)has been proven from the neutronic perspective in our previously published work without assessing the thermal hydraulic(TH)and solid structure performances.Therefore,the TH and solid structure performances must be studied to confirm these results and ensure the possibility of using a thorium-based fuel as an excellent accident-tolerant fuel.The TH and solid structure performances of thorium-based fuels were investigated and compared with those of UO_(2).The radial and axial power peaking factors(PPFs)for UO_(2),(^(232)Th,^(235)U)O_(2),and(^(232)Th,^(233)U)O_(2)were examined with a PWR assembly to determine the total PPF of each one.Both Gd_(2)O_(3)and Er_(2)O_(3)were tested as burnable absorbers(BAs)to manage the excess reactivity at the beginning of the fuel cycle(BOC)and reduce the total PPF.Er_(2)O_(3)resulted in a more significant reduction to the total PPF and,therefore,a greater reduction to the temperature distribution compared to Gd_(2)O_(3).Given these results,we analyzed the effects of adding Er_(2)O_(3)to thorium-based fuels on their TH and solid structure performances.展开更多
基金Project supported by National Natural Science Foundation of China(51571103,51501079)China Postdoctoral Science Foundation(2017M623319XB,2018T110999)Yunnan Provincial Department of Education Science Research Fund Project(2018JS033)
文摘The influence of Er_2 O_3 addition on the phase evolution and mechanical properties of sintered(1600 ℃,4 h) ZTA(yttria stabilized zirconia toughened alumina)-TiO_2 composites was investigated. The SEM and XRD results reveal the formation of a new erbium zirconium oxide,Zr_3 Er_4 O_(12),with a granulate morphology when Er_2 O_3 content is higher than 1 wt%. The grain sizes of both Al_2 O_3 and yttria-stabilized zirconia phases decrease with an increase in the Er_2 O_3 content. The relative density, Vickers hardness and fracture toughness of the composites are found to be strongly dependent on their grain sizes, relative densities and the formation of the Zr_3 Er_4 O_(12) secondary phases. The composite with 5 wt% Er_2 O_3 shows the highest relative density(99.93%), Vickers hardness(1752 HV) and fracture toughness(7.92 MPa·m^(1/2)).
文摘The doping effects of rare earth oxides Ho_2O_3 and Er_2O_3 on dielectric properties of BaTiO_3-based ceramics were studied. After adding rare earth elements, grain growth in this system was inhibited and the grain size was reduced evidently which realized the fine-grained effect. In this system, the trivalent oxides Ho_2O_3 and Er_2O_3 were added to BaTiO_3 ceramics. The rare earth oxides do not enter into inner lattice totally to replace A or B sites. Some of additives can improve dielectric strength by forming nonferroelectric phases, and the rest maintained at grain boundaries controls overgrowth of grains. The dielectric constant at room temperature is increased up to 3000 and the curve of TCC becomes flat. Meanwhile, the dielectric strength E_b becomes higher.
文摘导模法是一种超高熔点晶体的有效生长方法,可以生长高质量、大尺寸、高掺杂的Er:Lu_(2)O_(3)晶体。本文测试了导模法生长的Er:Lu_(2)O_(3)晶体的荧光发射谱及连续激光特性,在室温下获得了斜效率为23.1%的2.85μm连续激光输出,最高输出功率5.24 W。80 min功率RMS(Root mean square)稳定性优于1.4%,不同输出功率水平的激光光束质量M^(2)因子优于2.17。实验结果表明,导模法生长的Er:Lu_(2)O_(3)激光晶体具备输出高功率、高效率中红外激光的能力。
基金Project supported by the National High Technology Research and Development Program of China(2015AA034403)the National Natural Science Foundation of China(Grant No.51762036)。
文摘Er_(x)Ti_(0.1)Zr_(0.9-x)O_(2-1.5 x)(x=0.04,0.05,0.06,0.07,0.08) ceramics were synthesized by a solid-state reaction method.The influence of the Er^(3+) addition on the phase composition,Vickers hardness,fracture toughness,and thermal conductivity of this ceramic material was investigated.The X-ray diffraction results reveal that the c-ZrO_(2) content increases from 1.85 vol% to 33.89 vol%,and the percentage of t-ZrO_(2) decreases from 98.15 vol% to 66.11 vol% with the increase in Er^(3+) content from 4 mol% to 8 mol%.Moreover,the addition of Er^(3+) is beneficial to the volume expansion of the unit cell.At the same time,the incorporation of Er^(3+) weakens the coordination of oxygen ions around the metal cations,resulting in a corresponding decrease in the tetragonality of the t-ZrO_(2).The Vickers hardness and fracture toughness of the Er_(x)Ti_(0.1)Zr_(0.9-x)O_(2-1.5)_(x) ceramics show increasing and decreasing trends,respectively.The thermal conductivity has a significant decline due to point defects caused by the Er^(3+) doping.The 8 ETZ ceramic exhibits the highest Vickers hardness(12.7 GPa),the lowest fracture toughness(7.6 MPa·m^(1/2)),and the lowest average thermal conductivity(1.85 W/(m·K)) in the temperature range of 200-1000℃.All of the above properties are higher than those of the Y_(2)O_(3)-stabilized ZrO_(2) ceramic.
文摘The present research investigated the effect of reduced graphene oxide(rGO) integration with assynthesized Er_(2)O_(3)/ZnO nanocomposites on dielectric properties. The samples were characterized by Xray diffraction(XRD), Fourier transform infrared spectroscopy(FTIR), scanning electron microscopy(SEM), diffuse reflectance spectroscopy(DRS), and energy dispersive spectroscopy(EDS). Complex impedance spectroscopy was utilized to characterize dielectric relaxation phenomena in Er_(2)O_(3)/ZnO and Er_(2)O_(3)/ZnO/rGO nanocomposites. All the samples exhibit single relaxation phenomena which are ascribed to grain boundaries. The addition of rGO to Er_(2)O_(3)/ZnO nanocomposite results in the enhancement of dielectric response due to increased local field intensity caused by the formation of conductinginsulating interfaces. Furthermore, the AC conductivity of the Er_(2)O_(3)/ZnO/rGO is increased at higher frequencies due to the presence of free charge carriers in rGO. At higher frequencies, Er_(2)O_(3)/ZnO/rGO nanocomposite with increased concentration of ZnO exhibits a more stable dielectric constant with extremely low dielectric loss. Hence, the inclusion of rGO in Er_(2)O_(3)/ZnO nanocomposites makes it a novel prospective candidate in the field of energy storage devices.
基金Project support by the National Natural Science Foundation of China(51372203.51332004,51571166).
文摘In the present computational study,we found that Er:Lu_(2)O_(3)materials have promise for application in laser applications.The crystal structure and the electronic and optical properties of Er:Lu_(2)O_(3)materials were studied using first-principle calculations under the framework of density functional theory.Based on the experimental and calculated results,the structure of Lu_(2)O_(3)was established.The calculated results show that doping by Er^(3+)can effectively improve its absorption coefficient in the ultraviolet region and improve the static dielectric constant of Lu_(2)O_(3).As the doping concentration of Er^(3+)increases,the energy of the valence band electrons excited to the conduction band decreases,and the transition is more likely to occur.The absorption coefficient,reflectance,and electron energy loss spectroscopy are bathochromic shifted.The Lu_(2-x)Er_(x)O_(3)(0<x<0.09375)system still retains a low absorption coefficient reflectance in the mid-infrared and visible regions.Our calculations therefore show that rare earth doping can effectively regulate the electronic structure and optical properties of Lu_(2)O_(3).
文摘The possibility of utilizing thorium as a fuel in a pressurized water reactor(PWR)has been proven from the neutronic perspective in our previously published work without assessing the thermal hydraulic(TH)and solid structure performances.Therefore,the TH and solid structure performances must be studied to confirm these results and ensure the possibility of using a thorium-based fuel as an excellent accident-tolerant fuel.The TH and solid structure performances of thorium-based fuels were investigated and compared with those of UO_(2).The radial and axial power peaking factors(PPFs)for UO_(2),(^(232)Th,^(235)U)O_(2),and(^(232)Th,^(233)U)O_(2)were examined with a PWR assembly to determine the total PPF of each one.Both Gd_(2)O_(3)and Er_(2)O_(3)were tested as burnable absorbers(BAs)to manage the excess reactivity at the beginning of the fuel cycle(BOC)and reduce the total PPF.Er_(2)O_(3)resulted in a more significant reduction to the total PPF and,therefore,a greater reduction to the temperature distribution compared to Gd_(2)O_(3).Given these results,we analyzed the effects of adding Er_(2)O_(3)to thorium-based fuels on their TH and solid structure performances.