Synergistic carbon emission reduction at the urban scale is an inherent requirement for China to realize its carbon emission reduction commitments and promote sustainable and regional synergistic development.Using 16 ...Synergistic carbon emission reduction at the urban scale is an inherent requirement for China to realize its carbon emission reduction commitments and promote sustainable and regional synergistic development.Using 16 prefectural cities in Shandong Province as an example,this study defines and quantifies the regional carbon emission reduction capacity(CERC)based on the synergistic development of carbon emission reduction,environmental protection,and economic growth objectives.The spatial network characteristics of the(CERC)and its drivers were analyzed using social network analysis and quadratic assignment procedure regression methods.The results revealed that the spatial correlation of the CERC among prefectural cities has been increasing over the years.Jinan−Zibo−Qingdao is the center of the network,while the spatial linkage strength in the southwest and northeast of Shandong Province is weak.Geospatial distance and scientific development differences have a significant negative effect on the intensity of spatial association,while differences in economic and informatization developments have a considerable positive impact.Environmental regulatory differences and transportation differences are not significant.This study offers a methodological reference for similar studies in other countries or regions.At the same time,the findings provide a scientific basis for the government to rationally allocate urban resources and promote regional synergistic carbon emission reduction.展开更多
In the existing electricity market,the traditional power suppliers and renewable energy generators coexist in the power supply side. In the power supply side,renewable energy generators generate power by wind and othe...In the existing electricity market,the traditional power suppliers and renewable energy generators coexist in the power supply side. In the power supply side,renewable energy generators generate power by wind and other natural conditions,leading renewable energy output a certain randomness. However,the low marginal generating cost and the reduction of carbon emissions,and thus brings a certain advantage for renewable energy compared to alternative energy. Electricity,as a special commodity,stable and adequate power supply is a necessary guarantee for economic and social development. Power shortage situation is not allowed in the power system,and the extra power needs to be handled for the purpose of safety. In this paper,the hybrid power generated by renewable energy generators and traditional energy generators is used as power supply,and then the electricity market sells hybrid power to electricity consumers,the hybrid power system determines the optimal daytimeprice,nighttime price,and the optimal installed capacity of the renewable energy suppliers. We find that the installed capacity of renewable energy increases first and then decreases with the increase of the price sensitivity coefficient of traditional energy supply. Electricity demand is negatively related to electricity price in the current period,and is positively related to price in the other period. The average price of day and night is only related to the total potential demand of day and night and the total generation probability of renewable energy. The price difference between daytime and nighttime is positively related to potential electricity demand,and negatively related to the sensitivity coefficient of electricity price.展开更多
基金supported by the Department of Science and Technology of Shandong Province [Grant No.2021SFGC0904-05]Shandong Natural Science Foundation [Grant No.ZR2023MD079]+3 种基金Shandong Province Social Science Planning Research Project [Grant No.22CKRJ04]Taishan Scholar Project [Grant No.tsqn202103010]Zaozhuang Science and Technology Bureau [Grant No.2021GH22]the Key R&D Program of Shandong Province,China [Grant No.2023SFGC0101].
文摘Synergistic carbon emission reduction at the urban scale is an inherent requirement for China to realize its carbon emission reduction commitments and promote sustainable and regional synergistic development.Using 16 prefectural cities in Shandong Province as an example,this study defines and quantifies the regional carbon emission reduction capacity(CERC)based on the synergistic development of carbon emission reduction,environmental protection,and economic growth objectives.The spatial network characteristics of the(CERC)and its drivers were analyzed using social network analysis and quadratic assignment procedure regression methods.The results revealed that the spatial correlation of the CERC among prefectural cities has been increasing over the years.Jinan−Zibo−Qingdao is the center of the network,while the spatial linkage strength in the southwest and northeast of Shandong Province is weak.Geospatial distance and scientific development differences have a significant negative effect on the intensity of spatial association,while differences in economic and informatization developments have a considerable positive impact.Environmental regulatory differences and transportation differences are not significant.This study offers a methodological reference for similar studies in other countries or regions.At the same time,the findings provide a scientific basis for the government to rationally allocate urban resources and promote regional synergistic carbon emission reduction.
基金Supported by the National Natural Science Foundation of China(71273091,71272015)the Postgraduate Innovation Fund Project of SUFE(CXJJ-2016-327)
文摘In the existing electricity market,the traditional power suppliers and renewable energy generators coexist in the power supply side. In the power supply side,renewable energy generators generate power by wind and other natural conditions,leading renewable energy output a certain randomness. However,the low marginal generating cost and the reduction of carbon emissions,and thus brings a certain advantage for renewable energy compared to alternative energy. Electricity,as a special commodity,stable and adequate power supply is a necessary guarantee for economic and social development. Power shortage situation is not allowed in the power system,and the extra power needs to be handled for the purpose of safety. In this paper,the hybrid power generated by renewable energy generators and traditional energy generators is used as power supply,and then the electricity market sells hybrid power to electricity consumers,the hybrid power system determines the optimal daytimeprice,nighttime price,and the optimal installed capacity of the renewable energy suppliers. We find that the installed capacity of renewable energy increases first and then decreases with the increase of the price sensitivity coefficient of traditional energy supply. Electricity demand is negatively related to electricity price in the current period,and is positively related to price in the other period. The average price of day and night is only related to the total potential demand of day and night and the total generation probability of renewable energy. The price difference between daytime and nighttime is positively related to potential electricity demand,and negatively related to the sensitivity coefficient of electricity price.