We consider <i>multiverses</i> as time-amalgamated multiply warped products of Lorentzian (Einstein) manifolds. We define the Local Multiverse as a time-connected component associated with our physical (3 ...We consider <i>multiverses</i> as time-amalgamated multiply warped products of Lorentzian (Einstein) manifolds. We define the Local Multiverse as a time-connected component associated with our physical (3 + 1)-spacetime. It is a collection of “parallel universes” with (mutually) synchronized timelines. Metaphysical considerations suggest that the Local Multiverse could be an extremely complex agglomeration with, at least, several hundred parallel universes in the Solar neighbourhood (and many thousands in galaxy bulks). In this paper we study a simplified time-almagamated globally hyperbolic model. Our picture implies the multiversality of elementary particles which are, actually, transcosmic (super)strings with multiple endpoints on parallel universes considered as D-branes.展开更多
In this work,it is proved that every isotropic Weyl manifold with a semi- symmetric connection is locally conformal to an Einstein manifold with a semi-symmetric connection.
In this note, we obtain a sharp volume estimate for complete gradient Ricci solitons with scalar curvature bounded below by a positive constant. Using Chen-Yokota's argument we obtain a local lower bound estimate of ...In this note, we obtain a sharp volume estimate for complete gradient Ricci solitons with scalar curvature bounded below by a positive constant. Using Chen-Yokota's argument we obtain a local lower bound estimate of the scalar curvature for the Ricci flow on complete manifolds. Consequently, one has a sharp estimate of the scalar curvature for expanding Ricci solitons; we also provide a direct (elliptic) proof of this sharp estimate. Moreover, if the scalar curvature attains its minimum value at some point, then the manifold is Einstein.展开更多
In this work we investigate the possibility to represent physical fields as Einstein manifold. Based on the Einstein field equations in general relativity, we establish a general formulation for determining the metric...In this work we investigate the possibility to represent physical fields as Einstein manifold. Based on the Einstein field equations in general relativity, we establish a general formulation for determining the metric tensor of the Einstein manifold that represents a physical field in terms of the energy-momentum tensor that characterises the physical field. As illustrations, we first apply the general formulation to represent the perfect fluid as Einstein manifold. However, from the established relation between the metric tensor and the energy-momentum tensor, we show that if the trace of the energy-momentum tensor associated with a physical field is equal to zero then the corresponding physical field cannot be represented as an Einstein manifold. This situation applies to the electromagnetic field since the trace of the energy-momentum of the electromagnetic field vanishes. Nevertheless, we show that a system that consists of the electromagnetic field and non-interacting charged particles can be represented as an Einstein manifold since the trace of the corresponding energy-momentum of the system no longer vanishes. As a further investigation, we show that it is also possible to represent physical fields as maximally symmetric spaces of constant scalar curvature.展开更多
In this work,it is proved that every isotropic Weyl manifold with a semi- symmetric connection is locally conformal to an Einstein manifold with a semi-symmetric connection.
文摘We consider <i>multiverses</i> as time-amalgamated multiply warped products of Lorentzian (Einstein) manifolds. We define the Local Multiverse as a time-connected component associated with our physical (3 + 1)-spacetime. It is a collection of “parallel universes” with (mutually) synchronized timelines. Metaphysical considerations suggest that the Local Multiverse could be an extremely complex agglomeration with, at least, several hundred parallel universes in the Solar neighbourhood (and many thousands in galaxy bulks). In this paper we study a simplified time-almagamated globally hyperbolic model. Our picture implies the multiversality of elementary particles which are, actually, transcosmic (super)strings with multiple endpoints on parallel universes considered as D-branes.
文摘In this work,it is proved that every isotropic Weyl manifold with a semi- symmetric connection is locally conformal to an Einstein manifold with a semi-symmetric connection.
文摘In this note, we obtain a sharp volume estimate for complete gradient Ricci solitons with scalar curvature bounded below by a positive constant. Using Chen-Yokota's argument we obtain a local lower bound estimate of the scalar curvature for the Ricci flow on complete manifolds. Consequently, one has a sharp estimate of the scalar curvature for expanding Ricci solitons; we also provide a direct (elliptic) proof of this sharp estimate. Moreover, if the scalar curvature attains its minimum value at some point, then the manifold is Einstein.
文摘In this work we investigate the possibility to represent physical fields as Einstein manifold. Based on the Einstein field equations in general relativity, we establish a general formulation for determining the metric tensor of the Einstein manifold that represents a physical field in terms of the energy-momentum tensor that characterises the physical field. As illustrations, we first apply the general formulation to represent the perfect fluid as Einstein manifold. However, from the established relation between the metric tensor and the energy-momentum tensor, we show that if the trace of the energy-momentum tensor associated with a physical field is equal to zero then the corresponding physical field cannot be represented as an Einstein manifold. This situation applies to the electromagnetic field since the trace of the energy-momentum of the electromagnetic field vanishes. Nevertheless, we show that a system that consists of the electromagnetic field and non-interacting charged particles can be represented as an Einstein manifold since the trace of the corresponding energy-momentum of the system no longer vanishes. As a further investigation, we show that it is also possible to represent physical fields as maximally symmetric spaces of constant scalar curvature.
基金supported by the NNSF of China(11071257)Science Foundation of China University of Petroleum,Beijingsupported by Science and Technology Research Projectof Heilongjiang Provincial Department of Education(12511412)
文摘In this work,it is proved that every isotropic Weyl manifold with a semi- symmetric connection is locally conformal to an Einstein manifold with a semi-symmetric connection.